首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian fertilization, paternal chromatin is exhaustively remodeled, yet the maternal contribution to this process is unknown. To address this, we prevented the induction of meiotic exit by spermatozoa and examined sperm chromatin remodeling in metaphase II (mII) oocytes. Methylation of paternal H3-K4 and H3-K9 remained low, unlike maternal H3, although paternal H3-K4 methylation increased in zygotes. Thus, mII cytoplasm can sustain epigenetic asymmetry in a cell-cycle dependent manner. Paternal genomic DNA underwent oocyte-mediated cytosine demethylation and acquired maternally-derived K12-acetylated H4 (AcH4-K12) independently of microtubule assembly and maternal chromatin. AcH4-K12 persisted without typical maturation-associated deacetylation, irrespective of paternal pan-genomic cytosine methylation. Contrastingly, somatic cell nuclei underwent rapid H4 deacetylation; sperm and somatic chromatin exhibited asymmetric AcH4-K12 dynamics simultaneously within the same mII oocyte. Inhibition of somatic histone deacetylation revealed endogenous histone acetyl transferase activity. Oocytes thus specify the histone acetylation status of given nuclei by differentially targeting histone deacetylase and acetyl transferase activities. Asymmetric H4 acetylation during and immediately after fertilization was dispensable for development when both parental chromatin sets were hyperacetylated. These studies delineate non-zygotic chromatin remodeling and suggest a powerful model with which to study de novo genomic reprogramming.  相似文献   

2.
The tightly condensed chromatin of spermatozoa is rapidly decondensed after the spermatozoa enter oocytes. Although no factor involved in sperm chromatin decondensation (SCD) has been identified in mammals, it has been suggested that a factor related to SCD activity is present in the germinal vesicle (GV) of oocytes. Here, we found that the nucleolus-like body (NLB), which is a component of the GV, is involved in SCD in murine oocytes. When NLBs were microsurgically removed from GV-stage oocytes, SCD was significantly retarded in the paternal genome after fertilization following meiotic maturation. We found that the retardation of SCD in the NLB-removed oocytes was restored by the microinjection of mRNA encoding nucleoplasmin 2 (NPM2), a component of NLBs. Furthermore, SCD was retarded in the fertilized oocytes from Npm2-knockout females, and recombinant NPM2 alone could induce the SCD in vitro. These data provide evidence that NPM2 is involved in sperm chromatin remodeling in mammals.  相似文献   

3.
Histone acetylation plays an important role in the regulation of chromatin structure and gene function. In mammalian oocytes, histones H3 and H4 are highly acetylated during the germinal vesicle (GV) stage, and global histone deacetylation takes place via a histone deacetylase (HDAC)-dependent mechanism after GV breakdown (GVBD). The presence of HDACs in the GVs of mammalian oocytes in spite of the high acetylation states of nuclear histones indicates that the HDACs in the nucleus are inactive but become activated after GVBD. However, the fluctuation pattern, the localization of HDAC activity during meiotic maturation and, moreover, the responsibility of nuclear HDACs for global histone deacetylation are still unknown. Here, we demonstrated using porcine oocytes that total HDAC activity was maintained throughout meiotic maturation, and high HDAC activity was observed in both the nucleus and the cytoplasm at the GV stage. The experiments with valproic acid (VPA), a specific class I HDAC inhibitor, revealed that the HDACs in GVs were class I, and those in the cytoplasm were other than class I. Interestingly, VPA had no effect on global histone deacetylation after GVBD, indicating that nuclear HDACs were not required for global histone deacetylation. To confirm this possibility, we removed the nuclei from immature oocytes, injected somatic cell nuclei into the enucleated oocytes, and showed that injected somatic cell nuclei were dramatically deacetylated after nuclear envelope breakdown. These results revealed that nuclear contents, including class I HDACs, are not required for the global histone deacetylation during meiosis, and that cytoplasmic HDACs other than class I are responsible for this process.  相似文献   

4.
Histone H2A has several variants, and changes in chromatin composition associated with their replacement might involve chromatin structure remodeling. We examined the dynamics of the canonical histone H2A and its three variants, H2A.X, H2A.Z and macroH2A, in the mouse during oogenesis and pre-implantation development when genome remodeling occurs. Immunocytochemistry with specific antibodies revealed that, although H2A and all variants were deposited in the nuclei of full-grown oocytes, only histone H2A.X was abundant in the pronuclei of one-cell embryos after fertilization, in contrast with the low abundance of histone H2A and the absence of H2A.Z. The decline in H2A and the depletion of H2A.Z and macroH2A after fertilization were confirmed using Flag epitope-tagged H2A, H2A.Z and macroH2A transgenic mouse lines. Microinjection experiments with mRNA encoding the Flag-tagged proteins revealed a similar pattern of nuclear incorporation of the H2A variants. Fusion protein experiments using H2A, H2A.Z and macroH2A fused with the C-terminal 23 amino acids of H2A.X showed that the C-terminal amino acids of H2A.X function specifically to target this variant histone into chromatin in embryos after fertilization and that the absence of H2A.Z and macroH2A from the chromatin is required for normal development. These results suggest that global changes in the composition of histone H2A variants in chromatin play a role in genome remodeling after fertilization.  相似文献   

5.
The expression of the chondromodulin-I (ChM-I) gene, a cartilage-specific gene, is regulated by the binding of Sp3 to the core promoter region, which is inhibited by the methylation of CpG in the target genome in the osteogenic lineage, osteosarcoma (OS) cells. The histone tails associated with the hypermethylated promoter region of the ChM-I gene were deacetylated by histone deacetylase 2 (HDAC2) in three ChM-I-negative OS cell lines. Treatment with an HDAC inhibitor induced the binding of Sp3 in one cell line, which became ChM-I-positive. This process was associated with acetylation instead of the dimethylation of histone H3 at lysine 9 (H3-K9) and, surprisingly, the demethylation of the core promoter region. The demethylation was transient, and gradually replaced by methylation after a rapid recovery of histone deacetylaion. These results represent an example of the plasticity of differentiation being regulated by the cell-specific plasticity of epigenetic regulation.  相似文献   

6.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   

7.
8.
Modification of histones by acetylation is a well-known mechanism for the establishment and maintenance of specific chromatin structures with different activity states. In Planococcus citri males the paternal genome, early in development, becomes mostly inactive and heterochromatic. As we had not found methylation in the genome of P. citri, we analyzed the acetylation state of histone H4. We report here that, in males, differences in the level of histone H4 acetylation are indeed present in the two genomes of different parental origin; these differences were confirmed by treatment with the histone deacetylase inhibitor Trichostatin A. There is also evidence of acetylation of histone H4 on metaphase chromosomes. Our data therefore suggest a role of histone H4 acetylation in the imprinting of the paternal genome in P. citri males, thus supporting a role of modification of chromatin-related structural proteins in the epigenetic transmission of imprinting.  相似文献   

9.
10.
11.
Wu LP  Wang X  Li L  Zhao Y  Lu S  Yu Y  Zhou W  Liu X  Yang J  Zheng Z  Zhang H  Feng J  Yang Y  Wang H  Zhu WG 《Molecular and cellular biology》2008,28(10):3219-3235
Histone deacetylase inhibitor (HDACi) has been shown to demethylate the mammalian genome, which further strengthens the concept that DNA methylation and histone modifications interact in regulation of gene expression. Here, we report that an HDAC inhibitor, depsipeptide, exhibited significant demethylating activity on the promoters of several genes, including p16, SALL3, and GATA4 in human lung cancer cell lines H719 and H23, colon cancer cell line HT-29, and pancreatic cancer cell line PANC1. Although expression of DNA methyltransferase 1 (DNMT1) was not affected by depsipeptide, a decrease in binding of DNMT1 to the promoter of these genes played a dominant role in depsipeptide-induced demethylation and reactivation. Depsipeptide also suppressed expression of histone methyltransferases G9A and SUV39H1, which in turn resulted in a decrease of di- and trimethylated H3K9 around these genes' promoter. Furthermore, both loading of heterochromatin-associated protein 1 (HP1alpha and HP1beta) to methylated H3K9 and binding of DNMT1 to these genes' promoter were significantly reduced in depsipeptide-treated cells. Similar DNA demethylation was induced by another HDAC inhibitor, apicidin, but not by trichostatin A. Our data describe a novel mechanism of HDACi-mediated DNA demethylation via suppression of histone methyltransferases and reduced recruitment of HP1 and DNMT1 to the genes' promoter.  相似文献   

12.
In mammalian fertilization, the paternal genome is delivered to the secondary oocyte by sperm with protamine compacted DNA, while the maternal genome is arrested in meiotic metaphase II. Thus, at the beginning of fertilization, the two gametic chromatin sets are strikingly different. We elaborate on this contrast by reporting asymmetry for histone H3 type in the pre-S-phase zygote when male chromatin is virtually devoid of histone H3.1/3.2. Localization of the histone H3.3/H4 assembly factor Hira with the paternal chromatin indicates the presence of histone H3.3. In conjunction with this, we performed a systematic immunofluorescence analysis of histone N-tail methylations at position H3K4, H3K9, H3K27 and H4K20 up to the young pronucleus stage and show that asymmetries reported earlier are systematic for virtually all di- and tri-methylations but not for mono-methylation of H3K4 and H4K20, the only marks studied present in the early male pronucleus. For H4K20 the expanding male chromatin is rapidly mono-methylated. This coincides with the formation of maternally derived nucleosomes, a process which is observed as early as sperm chromatin decondensation occurs. Absence of tri-methylated H3K9, tri-methylated H4K20 and presence of loosely anchored HP1-beta combined with the homogenous presence of mono-methylated H4K20 suggests the absence of a division of the paternal chromatin in eu- and heterochromatin. In summary the male, in contrast to female G1 chromatin, is uniform and contains predominantly histone H3.3 as histone H3 variant.  相似文献   

13.
After in vitro maturation, the unfertilized pig oocytes underwent the process called ageing. This process involves typical events such as fragmentation, spontaneous parthenogenetic activation or lysis. Inhibition of histone deacetylase, using its specific inhibitor trichostatin A (TSA), significantly delayed the maturation of pig oocytes cultured in vitro. The ageing of oocytes matured under the effect of TSA is the same as the ageing in oocytes matured without TSA. The inhibition of histone deacetylase during oocyte ageing significantly reduced the percentage of fragmented oocytes (from 30% in untreated oocytes to 9% in oocytes aged under the effect of 100 nM of TSA). Oocytes matured in vitro and subsequently aged for 1 day under the effects of TSA retained their developmental capacity. After parthenogenetic activation, a significantly higher portion (27% vs. 15%) of oocytes developed to the blastocyst stage after 24 h ageing under 100 nM TSA when compared with oocytes activated after 24 h ageing in a TSA-free medium. The parthenogenetic development in oocytes aged under TSA treatment is similar to the development of fresh oocytes (29% of blastocyst) artificially activated immediately after in vitro maturation.  相似文献   

14.
This study was designed to investigate the effect of in vitro production systems of rat zygotes such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) on demethylation dynamics of the paternal genome. Immunostaining with anti‐5‐methylcytosine indicated that in vivo derived zygotes harvested at 20 hr post‐hCG injection had no active demethylation of paternal genomes as a mean relative methylation (RM) value, total fluorescence in the paternal genome divided by that in maternal one, at 1.17. Leaving zygotes in vivo or in culture for an additional 4 or 8 hr resulted in significant decreases of RM values to 0.14–0.31. Since in vitro‐derived zygotes were produced using oocytes harvested at 14 hr post‐hCG injection, zygotes at 6 hr after IVF or ICSI were considered developmentally comparable to the in vivo derived zygotes harvested at 20 hr post‐hCG injection, with RM values at 1.04 and 0.92, respectively. At 10 hr post‐IVF and ICSI, the RM values of the in vitro derived zygotes decreased significantly, but to a lesser extent compared with in vivo derived zygotes, to 0.53 and 0.62, respectively, without further decreases at 14 hr. Treatment of IVF‐derived zygotes with 5‐aza‐2′‐deoxycytidine (5‐azadC; an inhibitor for methylation) or trichostatin A (TSA; an inhibitor for deacetylation) resulted in the decreased RM values at 14 hr post‐IVF. However, developmental potential of the 5‐azadC‐ or TSA‐treated IVF zygotes up to the blastocyst stage was not improved. Thus, the demethylation dynamics of the paternal genome in pronuclear‐stage rat zygotes was impaired by routine protocols for in vitro embryo production such as IVF and ICSI. Mol. Reprod. Dev. 77: 69–75, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Sun JM  Chen HY  Moniwa M  Samuel S  Davie JR 《Biochemistry》1999,38(18):5939-5947
  相似文献   

16.
Global demethylation of DNA which marks the onset of development occurs asynchronously in the mouse; paternal DNA is demethylated at the the zygote stage, whereas maternal DNA is demethylated later in development. The biological function of such asymmetry and its underlying mechanisms are currently unknown. To test the hypothesis that the early demethylation of male DNA may be associated with protamine-histone exchange, we ,used round spermatids, whose DNA is still associated with histones, for artificial fertilization (round spermatid injection or ROSI), and compared the level of methylation of metaphase chromosomes in the resulting zygotes with the level of methylation in zygotes obtained after fertilization using mature sperm heads (intracytoplasmic sperm injection or ICSI). In contrast to ICSI-derived zygotes, ROSI-derived zygotes possessed only slightly demethylated paternal DNA. Both types of zygotes developed to term with similar rates which shows that hypomethylation of paternal DNA at the zygotic metaphase is not essential for full development in mice. Incorporation of exogenously expressed histone H2BYFP into paternal pronuclei was significantly higher in ICSI-derived zygotes than in ROSI-derived zygotes. Surprisingly, in the latter the incorporation of histone H2BYFP into the paternal pronucleus was still significantly higher than into the maternal pronucleus, suggesting that some exchange of chromatin-associated proteins occurs not only after ICSI but also after ROSI. This may explain why after ROSI, some transient demethylation of paternal DNA occurs early after fertilization, thus providing support for the hypothesis regarding the link between paternal DNA demethylation and protamine/histone exchange.  相似文献   

17.
Before fertilization, chromatins of both mouse oocytes and spermatozoa contain very few acetylated histones. Soon after fertilization, chromatins of both gametes become highly acetylated. The same deacetylation-reacetylation changes occur with histones of somatic nuclei transferred into enucleated oocytes. The significance of these events in somatic chromatin reprogramming to the totipotent state is not known. To investigate their importance in reprogramming, we injected cumulus cell nuclei into enucleated mouse oocytes and estimated the histone deacetylation dynamics with immunocytochemistry. Other reconstructed oocytes were cultured before and/or after activation in the presence of the highly potent histone deacetylase inhibitor trychostatin A (TSA) for up to 9 h postactivation. The potential of TSA-treated and untreated oocytes to develop to the blastocyst stage and to full term was compared. Global deacetylation of histones in the cumulus nuclei occurred between 1 and 3 h after injection. TSA inhibition of histone deacetylation did not affect the blastocyst rate (37% with and 34% without TSA treatment), whereas extension of the TSA treatment beyond the activation point significantly increased the blastocyst rate (up to 81% versus 40% without TSA treatment) and quality (on average, 59 versus 45 cells in day 4 blastocysts with and without TSA treatment, respectively). TSA treatment also slightly increased full-term development (from 0.8% to 2.8%). Thus, deacetylation of somatic histones is not important for reprogramming, and hyperacetylation might actually improve reprogramming.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号