首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  池杉(Taxodium ascendens)属于典型的耐水树种, 掌握其根系对淹水环境的生态适应机制对于研究林木耐水机理十分重要。通过对江苏省里下河低湿地17年生池杉在高水位(6~10月淹水, 全年平均地下水位-5 cm)、中水位(8~9月淹水, 全年平均地下水位-18 cm)和低水位(常年不淹水, 全年平均地下水位-41 cm)条件下的根系进行调查, 结果表明, 池杉在高水位条件下形成细长的气生根, 气生根依附于树干北侧或潜伏于树干外表皮内侧和纵裂的树皮缝隙中; 中水位池杉能形成直径(7.9±2.2) cm、高(7.7±2.7) cm的膝根, 每株立木拥有膝根数(5.8±1.7)个; 低水位池杉也能形成膝根, 但个体小、数量少。林木地下和地上生物量均呈现出明显的高水位<中水位<低水位的趋势, 但是地下/地上生物量的比值却呈相反趋势, 表明池杉耐水性虽然很强, 长期处于较高水位时生长会明显受抑, 尤其是地上生物量生长受抑更显著。高、中和低水位池杉的地径/胸径之比分别是2.66±0.11、2.08±0.10和1.75±0.08, 说明水位较高的环境能促进树干基部的相对粗生长。长期淹水导致地下根的容重降低, 但是气生根和膝根的容重却明显大于地下根。高、中水位池杉细根的Fe和Mn浓度显著高于低水位, 其中Fe的浓度相差10倍以上, 但是叶的Fe、Mn浓度在不同水位之间没有显著差异。膝根的呼吸具有明显的季节差异, 8月和9月平均每个膝根的呼吸速率为2.1~2.5 mgCO2&#8226;h–1, 6月和11月为0.7~0.9 mgCO2&#8226;h–1, 3月为0.4 mgCO2&#8226;h–1; 膝根吸收O2的摩尔数是释放CO2摩尔数的4.6倍, 说明膝根吸收的O2除了供自身呼吸, 大部分是提供给地下根利用。池杉之所以具有较强的耐水性, 与其在缺氧环境中能形成气生根和膝根、树干基部膨大和根系容重降低等有利于改善根系通气条件的生态适应机制密切相关。  相似文献   

2.
The effects of different water regimes on the pathogenicity of Meloidogyne graminicola on six rice cultivars were determined in two soil types in three greenhouse experiments. Two water regimes, simulating continuous flooding and intermittent flooding, were used with five of the cultivars. All cultivars were susceptible to the nematode, but IR72 and IR74 were more tolerant than IR20 and IR29 under intermittent flooding. All were tolerant under continuous flooding. UPLRi-5 was grown under multiple water regimes: no flooding; continuous flooding; flooding starting at maximum tillering, panicle initiation, or booting stage; and flooding from sowing until maximum tillering or booting. In sandy loam soil, M. graminicola reduced stem and leaf dry weight, root dry weight, and grain weight under all water regimes. In clay loam soil, the nematode reduced root weight when the soil was not flooded or flooded only for a short time, from panicle initiation, or booting to maturity, and from sowing to maximum tillering. In clay loam soil, stem and leaf dry weight, as well as grain weight, were reduced by the nematode under all water regimes except continuous flooding or when the soil was flooded from sowing to booting stage. These results indicate that rice cultivar tolerance of M. graminicola varies with water regime and that yield losses due to M. graminicola may be prevented or minimized when the rice crop is flooded early and kept flooded until a late stage of development.  相似文献   

3.
Summary Tidal flooding is widely believed to be an important determinant of marsh plant distributions but has rarely been tested in the field. In New England the marsh elder Iva frutescens often dominates the terrestrial border of salt marshes and we examined its flood tolerance and distribution patterns. Marsh elders only occur at elevations where their roots are not subject to prolonged water table flooding. Consequently they are found on the terrestrial border of marshes and at lower elevations associated with drainage ditches and locally elevated surfaces. Marsh elders transplanted to elevations lower than they normally occur died within a year with or without neighbors and greenhouse tests revealed that I. frutescens is much less tolerant of flooded soil conditions than plants found at lower marsh elevations. We also manipulated the water table level of field plots and found that increasing or decreasing water table drainage led to enhanced and diminished I. frutescens performance, respectively. Our results demonstrate the importance of water table dynamics in generating spatial patterns in marsh plant communities and provide further evidence that supports the hypothesis that the seaward distributional limits of marsh plant populations are generally dictated by physical processes.  相似文献   

4.
It has been hypothesized that wetland restoration policies have favored the restoration of the wettest classes of wetlands on the Des Moines Lobe of the prairie pothole region. To test this hypothesis we compared pre-drainage wetland distributions based on soils data and National Wetland Inventory (NWI) estimates of contemporary wetland distributions on the Des Moines Lobe. Based on the NWI data, the Des Moines Lobe today has only 3–4% of the wetland area that it had prior to the onset of drainage. On the basis of their soils, pre-drainage wetlands were predominantly temporarily flooded to saturated wetlands (84%), with only about 6% of the wetlands with water regimes classified as semi-permanently to permanently flooded. Depending on the interpretation of wetland modifiers on NWI maps, wetlands classified by the NWI as semi-permanent to permanently flooded make up more than 41% of the wetland area while wetlands with temporarily flooded to saturated water regimes account for 45–58% of the Lobe’s wetland area. The water regimes of contemporary wetlands when compared to their historic regimes suggest that many of today’s wetlands have different water regimes than they did prior to the onset of drainage. Because of the regional lowering of the groundwater table, many of today’s wetlands have drier water regimes, but some have wetter water regimes because they receive drainage tile inputs. Our results indicate that restoration has favored the wettest classes of wetlands and that temporarily to saturated wetland classes have not been restored in proportion to their relative abundance in the pre-drainage landscape.  相似文献   

5.
Results are presented which contradict previous reports thatin the graminaceous genus Puccinellia the root-shoot junctionhas a high diffusive resistance which severely restricts oxygentransfer from shoot to root. No such restriction was evidentin P. maritima, P. festuciformis var.festuciformis, and P. festucfformisvar.intermedia(= P. peisonis) and the plants produced well-developedroot systems in permanently flooded soils. The evidence obtainedsupports the view that, whether the root systems are whollyor only partially submerged by soil flooding the shoot is themajor source or entry point for oxygen required by the roots;also, that oxygen passes more readily from shoot to root thanit does through the wall cells of the root base. It is pointed out that paraffin oil is an undesirable productto employ as a diffusion barrier in studies of root aeration. Key words: Puccinellia, Oxygen transport, Diffusive resistance, Polarography  相似文献   

6.
Chemical and Hydraulic Influences on the Stomata of Flooded Plants   总被引:3,自引:0,他引:3  
Flooding the soil greatly reduced stomatal opening and leafgrowth rate of pea (Pisum sativum L cv. Feltham First) seedlings.This was despite the fact that leaf water potential and turgorwere not significantly affected by the treatment. Potassiumuptake and transport to the leaves was reduced by flooding.Stomata of flooded plants could be reopened by incubating leavesin solutions containing KC1. These observations raise the possibilitythat nutrient deficiency may limit stomatal opening and growthin flooded plants. We also consider the possibility that potassiumdeficiency may interact with a modification in the balance ofgrowth regulators in the leaves to modify stomatal behaviourand growth. Key words: Flooding, stomata, leaf growth, water relations, potassium  相似文献   

7.
Juncus articulatus, a species introduced to Australia, is codominant over large areas of Mother of Ducks Lagoon but is rare in other lagoons. It occurs widely within the lagoon but is concentrated in lower, wetter areas that are more disturbed by birds and cattle. This suggests that J. articulatus may be separated over elevation (and therefore water regime) and disturbance gradients from the native grass Glyceria australis, the dominant species in the lagoon. This paper compares the growth and interaction of G. australis and J. articulatus under different water regimes. The species responded differently to water regime both in monoculture and in mixture. Above ground production of J. articulatus was greatest under fluctuating water levels, least under a damp water regime and intermediate under flooded conditions. G. australis production was greatest under the damp, least under the flooded and intermediate under the fluctuating water regime. The outcome of interaction is dependent on water regime and time. After one year J. articulatus was the superior competitor under all water regimes. At the end of two years J. articulatus was still the superior competitor under fluctuating and flooded water regimes but not under the damp regime. The change in outcome after two years was due to the competitive superiority of G. australis during the second year under all water regimes. The relative importance and the management implications for the invasive potential of J. articulatus are assessed in shallow Australian wetlands with fluctuating water regimes.  相似文献   

8.
Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub‐arctic sedge fen carbon dioxide (CO2) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw‐down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.  相似文献   

9.
Understanding temporal niche separation between C3 and C4 species(e.g. C3 species flourishing in a cool spring and autumn whileC4 species being more active in a hot summer) is essential forexploring the mechanism for their co-existence. Two parallelpot experiments were conducted, with one focusing on water andthe other on nitrogen (N), to examine growth responses to wateror nitrogen (N) seasonality and competition of two co-existingspecies Leymus chinensis (C3 grass) and Chloris virgata (C4grass) in a grassland. The two species were planted in eithermonoculture (two individuals of one species per pot) or a mixture(two individuals including one L. chinensis and one C. virgataper pot) under three different water or N seasonality regimes,i.e. the average model (AM) with water or N evenly distributedover the growing season, the one-peak model (OPM) with morewater or N in the summer than in the spring and autumn, andthe two-peak model (TPM) with more water or N in the springand autumn than in the summer. Seasonal water regimes significantlyaffected biomass in L. chinensis but not in C. virgata, whileN seasonality impacted biomass and relative growth rate of bothspecies over the growing season. L. chinensis accumulated morebiomass under the AM and TPM than OPM water or N treatments.Final biomass of C. virgata was less impacted by water and Nseasonality than that of L. chinensis. Interspecific competitionsignificantly decreased final biomass in L. chinensis but notin C. virgata, suggesting an asymmetric competition betweenthe two species. The magnitude of interspecific competitionvaried with water and N seasonality. Changes in productivityand competition balance of L. chinensis and C. virgata undershifting seasonal water and N availabilities suggest a contributionof seasonal variability in precipitation and N to the temporalniche separation between C3 and C4 species. Key words: Chloris virgata, competition, growth, Leymus chinensis, nitrogen seasonality, water seasonality Received 19 November 2007; Revised 29 January 2008 Accepted 4 February 2008  相似文献   

10.
Photoacclimation of Scenedesmus protuberans Fritsch to fluctuatingirradiances, simulating vertical mixing, was studied in light-limitedcontinuous cultures. The algae were exposed to a simple sinusoidallight regime simulating diumal irradiance, and two fluctuatingregimes in which light fluctuations resulting from four andeight vertical circulations of the algae through the water columnwere imposed on the sinusoidal light regime. The total dailylight dose (TDLD) was kept constant. Maximum photosynthesisincreased, and cellular chlorophyll content and photosyntheticunit size decreased in response to light fluctuations. The efficiencyof photosynthesis decreased during the light period in the sinusoidallight regime, whereas it remained at the same level in the fluctuatinglight regimes. The results suggest that prolonged exposure tointermediate irradiances lowers the photosynthetic efficiencyof S.protuberans more than short exposure to high irradiancesalternated by lowlight periods, and that this species is ableto optimize its photosynthesis in fluctuating light.  相似文献   

11.

Background and Aims

Soil phosphorus (P) solubility declines sharply when a flooded soil drains, and an important component of rice (Oryza sativa) adaptation to rainfed lowland environments is the ability to absorb and utilize P under such conditions. The aim of this study was to test the hypothesis that rice cultivars differ in their P responses between water regimes because P uptake mechanisms differ.

Methods

Six lowland rice cultivars (three considered tolerant of low P soils, three sensitive) were grown in a factorial experiment with three water regimes (flooded, moist and flooded-then-moist) and four soil P levels, and growth and P uptake were measured. Small volumes of soil were used to maximize inter-root competition and uptake per unit root surface. The results were compared with the predictions of a model allowing for the effects of water regime on P solubility and diffusion.

Key Results

The plants were P stressed but not water stressed in all the water regimes at all P levels except the higher P additions in the flooded soil. The cultivar rankings scarcely differed between the water regimes and P additions. In all the treatments, the soil P concentrations required to explain the measured uptake were several times the concentration of freely available P in the soil.

Conclusions

The cultivar rankings were driven more by differences in growth habit than specific P uptake mechanisms, so the hypothesis cannot be corroborated with these data. Evidently all the plants could tap sparingly soluble forms of P by releasing a solubilizing agent or producing a greater root length than measured, or both. However, any cultivar differences in this were not apparent in greater net P uptake, possibly because the restricted rooting volume meant that additional P uptake could not be converted into new root growth to explore new soil volumes.Key words: Oryza sativa, rainfed lowland, phosphorus efficiency, root morphology, solubilization, rice cultivar  相似文献   

12.
Nitrogen assimilation of pea plants (Pisum sativum cv. Meteor)was studied in growth cabinets tinder a range of water, salt,and aeration regimes in the rooting medium. Treatments wereimposed in the period 14–30 d after germination usingseedlings already nodulated in an optimum root environment. Highest nitrogen fixation in water culture required a strengthof culture solution one fifth of that optimal for fixation insand culture. Fixation in water culture of optimum strengthwas significantly improved by continuous bubble aeration orby lowering the level of culture solution below the main zoneof nodulation. However, if supra-optimal concentrations of solutionwere used, fixation was markedly inhibited by lowering the solutionlevel, this being associated with an accumulation of high levelsof salts on exposed root and nodule surfaces. In – N (minus nitrogen) sand culture continuous waterloggingreduced nitrogen content to 40 per cent of that of non-stressedplants. In nitrate-fed plants waterlogging effects were lesssevere. Waterlogging decreased nodule tissue production anddecreased the specific activity of nitrogenase, as assayed byacetylene reduction. These effects were most marked three ormore cm below the sand surface. Watering on alternate days with free drainage at all times yieldedmaximum fixation in – N sand culture. Regimes increasingthe extent of waterlogging or drying out in comparison withthis optimum produced increasingly great decreases in nitrogenfixation. For equivalent reductions in total fixation, percentageN in dry matter was consistently lower in waterlogged than indroughted plants suggesting that excess water had the more specificeffect on symbiotic activity. Both forms of stress affectedparticularly the transport of nitrogen from root to shoot.  相似文献   

13.
ABA in Roots and Leaves of Flooded Pea Plants   总被引:5,自引:0,他引:5  
Zhang, J. and Davies, W. J. 1987. ABA in roots and leaves offlooded pea plants.—J. exp. Bot. 38: 649–659. Roots of potted pea (Pisum sativum L. cv. Feltham First) seedlingswere flooded with tap water. Within a few hours of the startof the flooding treatment the content of free ABA in roots increasedcompared to contents of roots of unflooded control plants butthis increase was not statistically significant until the beginningof the second day after flooding. Approximately 36 h after firstflooding significant increases in the free-ABA content of leaveswere detected. This was 14 h after significant increases inthe amount of ABA in the roots of the same plants. There wasmarked diurnal variation in free-ABA content of leaves and rootsof plants that had been flooded for several days, with maximumcontents recorded 3 h or more after the beginning of the lightperiod. Very rapidly after the lights were switched oft ABAcontents declined. On day 3 of the flooding treatment, therewas more than a 5-fold decrease in the free-ABA content of leaveswithin a few hours of the beginning of the dark period. Radio-immunoassaysuggested that a very large proportion of the total ABA in theplant was in a bound form. This form of ABA increased substantiallyas the flooding period progressed. The importance of variation in ABA content for the control ofwater relations and gas exchange of flooded plants is discussed. Key words: Flooding, Pisum sativum, ABA, water relations  相似文献   

14.
The biomass and metal concentrations of two populations ofPhragmitesaustraliswere studied by growth in a glasshouse in three amelioratedsubstrata [Mai Po (MP) sediment, fly ash (FA) and lead/zincmine tailings (TL)] under flooded and dry conditions for 90d. Plants were raised from seeds from ‘clean’ (MaiPo, Hong Kong) and metal-contaminated (Plombières, Belgium)sites. Seedling growth was best in fly ash, root dry weightsbeing higher in flooded than dry conditions, and growth poorestin tailings, in which shoot and root dry weights were higherunder dry conditions for both populations. However, in the MPsubstratum conditions did not significantly affect shoot androot dry weights of either population. In the fly ash and tailings,more metals were generally taken up in both roots and shootsin flooded than dry conditions, but there was little differencein the MP substratum. Metal uptake was mostly similar in bothpopulations in seedlings grown in the same substratum, therebeing no clear evidence of ecotypic differentiation.Copyright1998 Annals of Botany Company Biomass, flooded and dry conditions, metal uptake,Phragmites australis.  相似文献   

15.
ROBERTSON  N. F. 《Annals of botany》1958,22(2):159-173
When colonies of Fusarium oxysporum, growing on plates of mineral-sucroseagar, are flooded with the mineral-sucrose solution, withoutadded agar, or with solutions of any of the constituents ofthe mineral-sucrose mixture at a concentration of 0.076 M theleading hyphal apices at the agar surface continue to grow onunchecked. If, however, the colonies are flooded with solutionsof decreasing and increasing molarity from 0.076 M an increasingproportion of the leading hyphal apices at the agar surfacestop growing, and branch subterminally. In distilled water about50 per cent. of the apices branch and this branching is precededby swelling, whereas in 0.5 M sucrose more than 90 per cent.of the apices branch and the branching is not accompanied byswelling. In the distilled water those hyphae which do not branchswell a little and grow on from the apex within 40 seconds. When hyphal apices are flooded with distilled water for from10 to 40 seconds and then transferred to mineral-sucrose solutionmore than 90 per cent, of the hyphal apices branch, whereasflooding with distilled water for 60 seconds or longer givesthe same percentage of branched apices as does flooding withdistilled water alone. It is shown that swelling and branching of the hyphal apex arenot causally related but that branching always occurs followingarrestment of the hyphal apex for more than 60 seconds. It issuggested that the phenomena reported can be explained in termsof an irreversible change in the apical cap of the arrestedhypha such that continued extension can no longer take placein this region and fresh outlets for growth must then be foundsubterminally. Such a mechanism, however triggered, could accountfor a wide variety of morphogenetic forms in the fungi.  相似文献   

16.
Flooding the soil for 5–7 d caused partial desiccationin leaves of pea plants (Pisum sativum. L. cv. ‘Sprite’).The injury was associated with anaerobiosis in the soil, a largeincrease in the permeability of leaf tissue to electrolytesand other substances, a low leaf water content and an increasedwater saturation deficit (WSD). Desiccating leaves also lackedthe capacity to rehydrate in humid atmospheres, a disabilityexpressed as a water resaturation deficit (WRSD). This irreversibleinjury was preceded during the first 4–5 d of floodingby closure of stomata within 24 h, decreased transpiration,an unusually large leaf water content and small WSD. Leaf waterpotentials were higher than those in well-drained controls.Also, there was no appreciable WRSD. Leaflets detached fromflooded plants during this early phase retained their watermore effectively than those from controls when left exposedto the atmosphere for 5 min. Stomatal closure and the associated increase in leaf hydrationcould be simulated by excising leaves and incubating them withtheir petioles in open vials of water. Thus, such changes inflooded plants possibly represented a response to a deficiencyin the supply of substances that would usually be transportedfrom roots to leaves in healthy plants (negative message). Ionleakage and the associated loss of leaf hydration that occurswhen flooding is extended for more than 5 d could not be simulatedby isolating the leaves from the roots. Appearance of this symptomdepended on leaves remaining attached to flooded root systems,implying that the damage is caused by injurious substances passingupwards (positive message). Both ethylene and ethanol have beeneliminated as likely causes, but flooding increased phosphorusin the leaves to concentrations that may be toxic. Key words: Pisum sativum, Flooding, Foliar desiccation, Stomata, Ethylene  相似文献   

17.
The recruitment and mortality of Melaleuca quinquenervia seedlings were evaluated over a 3-year period in a seasonally inundated wetland in the western Everglades region. The mean (±SE) density of seedlings/saplings m?1 declined from 64.8 (±4.5) to 0.5 (±0.2) over the 3 years, a population reduction of 99.2%. Four distinct water regimes characterized this site: dry, dry to wet transition, flooded, and wet to dry transition. Seedling recruitment was highest in the dry to wet transition and lowest in the flooded water regime, while mortality was highest under flooded and dry water regimes. The mean estimate of population growth (λ) across water regimes was 0.64 ± 0.05 indicating negative population growth. Elimination of introduced insect herbivores using insecticides did not reduce mortality of recruited M. quinquenervia seedlings/saplings indicating that direct herbivory was not responsible for the decline in seedling density. On the other hand, a mean of only 0.2 (±0.03) viable seeds m?2 d?1 fell into the plots, an amount considerably lower than in previous studies. We submit that change in the invasion trajectory M. quinquenervia was most likely caused by reduced seed inputs from aerial seed banks depleted by insect herbivory rather than direct herbivory on seedlings. This may indicate a fundamental alteration of M. quinquenervia population dynamics ultimately resulting in a less invasive and, therefore, less ecologically damaging species.  相似文献   

18.
Are Roots a Source of Abscisic Acid for the Shoots of Flooded Pea Plants?   总被引:4,自引:1,他引:3  
Flooding the soil for 2–5 d decreased stomatal conductancesof pea plants (Pisum sativum L., cv. Sprite) with six or sevenleaves. This coincided with slower transpiration, increasedleaf water potentials and increased concentrations of abscisicacid (ABA) in the leaves. No increase in ABA was found in theterminal 20 mm of roots of flooded plants over the same timeperiod. Small stomatal conductances associated with increases in foliarABA were also found in plants grown in nutrient solution whenaeration was halted, causing the equilibrium partial pressuresof dissolved oxygen to fall below 05 It Pa. No increase in ABAconcentration in young secondary roots of the non-aerated plantswas detected after 24, 48 or 72 h, even when the shoot, thepresumed site of deposition for any ABA from the roots, wasremoved 5–6 h before analysis. Similarly, ABA concentrations in roots were not increased whenthe nutrient solution was de-oxygenated by continuous purgingwith nitrogen gas. The abscisic acid concentration in leaf epidermis,the tissue most likely to be the recipient of any ABA movingin the transpiration stream from oxygen-deficient roots, waslower than in the remaining parts of the leaf when examinedin the mutant Argenteum which possesses easily removable epidermallayers. It is concluded that the leaves of plants subjectedto flooding of the soil or oxygen shortage in the root environmentare not enriched substantially with ABA from the roots. A moreprobable source of this growth regulator is the leaf itself. Key words: Pisum sativum, flooding, roots, hormones, aeration stress, abscisic acid, Argenteum mutant  相似文献   

19.
An investigation was carried out to examine the effect of aerationon the growth of Catharanthus roseus suspension cultures inairlift bioreactors. A high aeration rate (0·86 v.v.m.)was found to inhibit the growth of cultures. Venting culturesat a high rate with low oxygen content gas mixtures was equallyinhibitory to culture growth, showing that high aeration wasnot inhibitory as a result of oxygen toxicity. The dissolvedcarbon dioxide tension was found to be lower in cultures operatedat high aeration than those operated at low aeration. Supplyingexogenous CO2 to cultures at high aeration restored the CO2tension to values normally encountered at a low aeration rate,and was found to alleviate the inhibitory effects at high aeration.However, further increasing the CO2 supply to cultures was foundto be severely inhibitory to growth. Therefore, the growth ofC. roseus cultures is very sensitive to dissolved CO2 concentration,growth being inhibited at values either higher or lower thanan optimum. Key words: Aeration, carbon dioxide, Catharanthus roseus suspension culture  相似文献   

20.
Ethidium bromide (EB) inhibited growth of cells of the non-sulfurpurple photosynthetic bacterium Rhodopseudomonas spheroides.The inhibitory action of EB on the light-anaerobic culturedcells was stronger than on dark-aerobic cultured ones. EB alsosuppressed the induced synthesis of bacteriochlorophyll (Bchl)and carotenoids in the dark-aerobically grown cells incubatedwith gentle aeration under no-growth conditions, suggestingthat the target of the inhibitory action of EB on the photosyntheticgrowth of R. spheroides cells is chromatophore formation. EBdepressed the incorporation of 3H- or 14C-uracil into both RNAand DNA fractions from cells incubated with gentle aeration.In contrast, inhibition by EB of 3H-uracil incorporation intothe DNA fraction was not observed under vigorous aeration. Ourfindings seemed to favor the hypothesis described previously(10) that lowering the intracellular oxidation-reduction potentialmight bring about a unique synthesis or turnover of DNA responsiblefor chromatophore formation. (Received December 22, 1977; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号