首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
L Medlin  H J Elwood  S Stickel  M L Sogin 《Gene》1988,71(2):491-499
Polymerase chain reaction conditions were established for the in vitro amplification of eukaryotic small subunit ribosomal (16S-like) rRNA genes. Coding regions from algae, fungi, and protozoa were amplified from nanogram quantities of genomic DNA or recombinant plasmids containing rDNA genes. Oligodeoxynucleotides that are complementary to conserved regions at the 5' and 3' termini of eukaryotic 16S-like rRNAs were used to prime DNA synthesis in repetitive cycles of denaturation, reannealing, and DNA synthesis. The fidelity of synthesis for the amplification products was evaluated by comparisons with sequences of previously reported rRNA genes or with primer extension analyses of rRNAs. Fewer than one error per 2000 positions were observed in the amplified rRNA coding region sequences. The primary structure of the 16S-like rRNA from the marine diatom, Skeletonema costatum, was inferred from the sequence of its in vitro amplified coding region.  相似文献   

2.
Estimating Substitution Rates in Ribosomal RNA Genes   总被引:7,自引:0,他引:7       下载免费PDF全文
A. Rzhetsky 《Genetics》1995,141(2):771-783
A model is introduced describing nucleotide substitution in ribosomal RNA (rRNA) genes. In this model, substitution in the stem and loop regions of rRNA is modeled with 16- and four-state continuous time Markov chains, respectively. The mean substitution rates at nucleotide sites are assumed to follow gamma distributions that are different for the two types of regions. The simplest formulation of the model allows for explicit expressions for transition probabilities of the Markov processes to be found. These expressions were used to analyze several 16S-like rRNA genes from higher eukaryotes with the maximum likelihood method. Although the observed proportion of invariable sites was only slightly higher in the stem regions, the estimated average substitution rates in the stem regions were almost two times as high as in the loop regions. Therefore, the degree of site heterogeneity of substitution rates in the stem regions seems to be higher than in the loop regions of animal 16S-like rRNAs due to presence of a few rapidly evolving sites. The model appears to be helpful in understanding the regularities of nucleotide substitution in rRNAs and probably minimizing errors in recovering phylogeny for distantly related taxa from these genes.  相似文献   

3.
In order to ascertain a phylogenetic position of the freshwater amitochondriate amoeboflagellate Pelomyxa palustris its small subunit (SSU) rRNA gene was amplified and sequenced. It was shown to be 3502 bp long. The predicted secondary structure of its rRNA includes at least 16 separate expansion zones located in all the variable regions (V1-V9), as well as in some conservative gene regions. Most insertions are represented by sequences of low complexity that have presumably arisen by a slippage mechanism. Relatively conservative, uniformly positioned motifs contained in regions V4 and V7, as well as in some others, made it possible to perform folding. In maximum likelihood, maximum parsimony, and neighbor-joining trees, P. palustris tends to cluster with amitochondriate and secondary lost mitochondria amoebae and amoeboflagellates Entamoeba, Endolimax nana, and Phreatamoeba balamuthi, comprising together with them and aerobic lobose amoebae Vannella, Acanthamoeba, Balamuthia, and Hartmannella a monophyletic cluster. Another pelobiont, Mastigamoeba invertens, does not belong to this cluster. No specific similarity was discovered between the SSU rRNA of P. palustris and amitochondriate taxa of 'Archezoa': Diplomonada, Parabasalia, Microsporidia. Pelomyxa palustris SSU rRNA does not occupy a basal position in the phylogenetic trees and could be ascribed to the so-called eukaryotic 'crown' group if the composition of the latter were not so sensitive to the methods of tree building. Thus, molecular and morphological data suggest that P. palustris represents a secondarily modified eukaryotic lineage.  相似文献   

4.
5.
A new approach for function and structure study of ribosomes based on oligodeoxyribonucleotide-directed cleavage of rRNA with RNase H and subsequent reconstitution of ribosomal subunits from fragmented RNA has been developed. The E coli 16S rRNA was cleaved at 9 regions belonging to different RNA domains. The deletion of 2 large regions was also produced by cleaving 16S rRNA in the presence of 2 or 3 oligonucleotides complementary to different RNA sites. Fragmented and deleted RNA were shown to be efficiently assembled with total ribosomal protein into 30S-like particles. The capacity to form 70S ribosomes and translate both synthetic and natural mRNA of 30S subunits reconstituted from intact and fragmented 16S mRNA was compared. All 30S subunits assembled with fragmented 16S rRNA revealed very different activity: the fragmentation of RNA at the 781-800 and 1392-1408 regions led to the complete inactivation of ribosomes, whereas the RNA fragmentation at the regions 296-305, 913-925, 990-998, 1043-1049, 1207-1215, 1499-1506, 1530-1539 did not significantly influence the ribosome protein synthesis activity, although it was also reduced. These findings are mainly in accordance with the data on the functional activity of some 16S rRNA sites obtained by other methods. The relations between different 16S RNA functional sites are discussed.  相似文献   

6.
7.
8.
J Wolters 《Bio Systems》1991,25(1-2):75-83
Large insertions and deletions in the variable regions of eukaryotic 16S-like rRNA relative to the archaebacterial structure have been defined as a marker for rapidly evolving taxa. Deletions in the rRNA occur in the diplomonad Giardia and the microsporidian Vairimorpha, whereas insertions occur in Euglenozoa (Euglena and the kinetoplastids), Acanthamoeba, Naegleria, Physarum, Dictyostelium, the apicomplexan Plasmodium, the ciliate Euplotes, and some metazoa. Except Acanthamoeba and Euplotes, all of these protists were previously placed at the base of the eukaryote phylogeny. A re-analysis of the 16S-like rRNA and 5S rRNA data with the neighborliness method revealed a close relationship of Apicomplexa to the dinoflagellate-ciliate clade, most probably closer to the dinoflagellates. Morphological evidence that supports this grouping is the layer of sacs underneath the plasma membrane in all three taxa and the identical structure of trichocysts in the apicomplexan Spiromonas and dinoflagellates. The remaining rapidly evolving organisms might still be misplaced in the 16S-like rRNA trees.  相似文献   

9.
There are six small ribosomal RNAs in trypanosome ribosomes. sRNA3 and sRNA5 of Trypanosoma brucei brucei have been partially sequenced. Sequence homologies indicate that sRNA3 is 5.8S RNA and sRNA5 is 5S RNA of T. b. brucei. The regions specifying these two, and the remaining four small RNAs, have been identified within clones of rRNA genes and in the genome. Five of the small RNAs, 1, 2, 3, 4 and 6, hybridise exclusively within the major rRNA gene repeat. A map of the regions specifying these small RNAs is presented. sRNA3 (5.8S RNA) hybridises to a region corresponding to the transcribed spacer of other eukaryotes. sRNA1 hybridises to a region between sequences specifying the two large subunit RNA molecules of 2.3 kb and 1.8 kb. Sequences specifying sRNAs 2 and 4 are present near the sequence specifying sRNA1, while sRNA6 appears to be specified 3' to the sequence specifying the 1.8-kb RNA sequence. In addition regions of secondary hybridisation for small RNAs 2, 3, 4 and 6 have also been identified. Though sRNA5 (5S RNA) hybridises within the major rRNA repeat, a separate 5S RNA gene repeat with unit size of 760 bp is also present. It is 10 to 20 times more abundant than the major rRNA gene repeat.  相似文献   

10.
11.
A 23S ribosomal RNA gene of Pseudomonas cepacia has been cloned and sequenced. A general higher-order structure model based on earlier published models has been derived from comparative analysis of 23S-like rRNAs of eubacteria, archaebacteria, organelles and eukaryotes. Differences between the previous models were carefully analyzed and controversial regions evaluated. Moderately large insertions and deletions have been found at new points in the secondary structure. The analysis of 50 published as well as unpublished 23S rRNA sequences provide additional proof for six of the seven previously suggested tertiary interactions within the 23S rRNA. P. cepacia is the first representative of the beta subgroup of the Proteobacteria phylum whose 23S rRNA has been sequenced. A tree reflecting evolutionary relationships of prokaryotes was constructed. The topology of this tree is in good agreement with the 16S rRNA tree.  相似文献   

12.
The causative agent of Whipple's disease, Tropheryma whipplei, is a slow-growing bacterium that remains poorly-understood. Genetic characterization of this organism has relied heavily upon rRNA sequence analysis. Pending completion of a complete genome sequencing effort, we have characterized several conserved non-rRNA genes from T. whipplei directly from infected tissue using broad-range PCR and a genome-walking strategy. Our goals were to evaluate its phylogenetic relationships, and to find ways to expand the strain typing scheme, based on rDNA sequence comparisons. The genes coding for the ATP synthase beta subunit (atpD), elongation factor Tu (tuf), heat shock protein GroEL (groEL), beta subunit of DNA-dependent RNA polymerase (rpoB), and RNase P RNA (rnpB) were analyzed, as well as the regions upstream and downstream of the rRNA operon. Phylogenetic analyses with all non-rRNA marker molecules consistently placed T. whipplei within the class, Actinobacteria. The arrangement of genes in the atpD and rpoB chromosomal regions was also consistent with other actinomycete genomes. Tandem sequence repeats were found upstream and downstream of the rRNA operon, and downstream of the groEL gene. These chromosomal sites and the 16S-23S rRNA intergenic spacer regions were examined in the specimens of 11 patients, and a unique combination of tandem repeat numbers and spacer polymorphisms was found in each patient. These data provide the basis for a more discriminatory typing method for T. whipplei.  相似文献   

13.
Two new Watson-Crick type interactions in 23S-like ribosomal RNA have been identified by comparative sequence analysis. These interactions, A1269/U2011 and C1270/G2010 (E. coli numbering) along with the previously proposed A1262/U2017 suggest an anti-parallel helical arrangement characteristic of secondary structure in the 1265/2015 region of 23S rRNA. Nested within these three interactions are three universal juxtapositions which in principle allow the formation of an irregular helix containing two additional A-G interactions and a universal A-U pair. Whether or not this extended helix is biologically significant is uncertain. The proponderance of interactions in the 1265/2015 region and its location relative to the known structural domains of 23S rRNA suggest that this region may be part of a central structural core similar to that already known in 16S rRNA.  相似文献   

14.
The traditional way to infer RNA secondary structure involves an iterative process of alignment and evaluation of covariation statistics between all positions possibly involved in basepairing. Watson-Crick basepairs typically show covariations that score well when examples of two or more possible basepairs occur. This is not necessarily the case for non-Watson-Crick basepairing geometries. For example, for sheared (trans Hoogsteen/Sugar edge) pairs, one base is highly conserved (always A or mostly A with some C or U), while the other can vary (G or A and sometimes C and U as well). RNA motifs consist of ordered, stacked arrays of non-Watson-Crick basepairs that in the secondary structure representation form hairpin or internal loops, multi-stem junctions, and even pseudoknots. Although RNA motifs occur recurrently and contribute in a modular fashion to RNA architecture, it is usually not apparent which bases interact and whether it is by edge-to-edge H-bonding or solely by stacking interactions. Using a modular sequence-analysis approach, recurrent motifs related to the sarcin-ricin loop of 23S RNA and to loop E from 5S RNA were predicted in universally conserved regions of the large ribosomal RNAs (16S- and 23S-like) before the publication of high-resolution, atomic-level structures of representative examples of 16S and 23S rRNA molecules in their native contexts. This provides the opportunity to evaluate the predictive power of motif-level sequence analysis, with the goal of automating the process for predicting RNA motifs in genomic sequences. The process of inferring structure from sequence by constructing accurate alignments is a circular one. The crucial link that allows a productive iteration of motif modeling and realignment is the comparison of the sequence variations for each putative pair with the corresponding isostericity matrix to determine which basepairs are consistent both with the sequence and the geometrical data.  相似文献   

15.
A broad-host-range vector that expresses a unique artificial RNA in Pseudomonas putida has been developed. This vector was derived from the plasmid pBBR1MCS and incorporates regulatory regions from the Escherichia coli ribosomal operon, rrnB. These include the promoters P1 and P2, and the terminators T1 and T2. The gene for the artificial RNA was derived from Vibrio proteolyticus 5S rRNA. The artificial RNA product accumulates to a level that is 10–20% of the total 5S rRNA in P. putida. The RNA product is not incorporated into ribosomes and has a minimal effect on cell growth rate. In contrast, when wild-type V. proteolyticus 5S rRNA was expressed from the vector, it was incorporated into ribosomes. It is expected that this new vector system will allow artificial RNA expression systems to be readily developed for a large variety of species. Received: 16 June 1999 / Accepted: 11 August 1999  相似文献   

16.
17.
Summary Complete small-subunit rRNA (16S-like rRNA) coding region sequences were determined for eight species of the Chlorococcales (Chlorophyceae). The genera investigated includePrototheca, Ankistrodesmus, Scenedesmus, and fiveChlorella species. Distance matrix methods were used to infer a phylogenetic tree that describes evolutionary relationships between several plant and green algal groups. The tree exhibits a bifurcation within the Chlorococcales consistent with the division into Oocystaceae and Scenedesmaceae, but three of the fiveChlorella species are more similar to other algae than toChlorella vulgaris. All of the sequences contain primary and secondary structural features that are characteristic of 16S-like rRNAs of chlorophytes and higher plants.Anikstrodesmus stipitatus, however, contains a 394-bp group I intervening sequence in its 16S-like rRNA coding region.  相似文献   

18.
艾丁嗜盐小盒菌B2菌株(Haloarcula aidinensis, strain B2)16Sr RNA的核苷酸序列已以双脱氧核苷酸链终止法确定。该菌16Sr RNA显示出了典型的古生物类(Archaea)特性。虽然艾丁嗜盐小盒菌B2菌株在序列方面更接近细菌类(Bacteria)的16SrRNA,但它的序列也显示出与真核生物类(Eucarya)的某些特殊的相似性。在序列和结构方面,该菌与细菌类或真核生物类之间的相似程度要高于细菌类与真核生物类之间的相似程度。另外,该菌16SrRNA的序列与其它嗜盐菌序列相比较支持了以前的结论,即艾丁嗜盐小盒菌B2菌株应属于嗜盐小盒菌属(Haloarcula)的一新种。  相似文献   

19.
20.
Complete sequences of the rRNA genes of Drosophila melanogaster   总被引:19,自引:0,他引:19  
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA simplicity reveals that, in contrast to the intergenic spacer (IGS) and the external transcribed spacer (ETS), most of the rRNA gene regions have been refractory to the action of slippage-like events, with the exception of the 28S rRNA gene expansion segments. It would seem that the 28S rRNA can accommodate the products of slippage-like events without loss of activity. In the following two papers we analyze the effects of sequence divergence on the evolution of (1) the 28S gene "expansion segments" and (2) the 28S and 18S rRNA secondary structures among eukaryotic species, respectively. Our detailed analyses reveal, in addition to unequal crossing-over, (1) the involvement of slippage and biased mutation in the evolution of the rDNA multigene family and (2) the molecular coevolution of both expansion segments and the nucleotides involved with compensatory changes required to maintain secondary structures of RNA.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号