首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable ubisemiquinone radical(s) in the cytochrome b?c1-II complex of bovine heart was observed following reduction by succinate in the presence of catalytic amounts of succinate dehydrogenase. The radical was abolished by addition of antimycin A, but a residual radical remained in the presence of excess exogenous Q2. The radical showed an EPR signal of g = 2.0046 ± .003 at X band (~9.4 GHz) with no resolved hyperfine structure and had a line width of 8.1 ± .5 Gauss at 23°C. The Q band (35 GHz) spectra showed wellresolved g-anisotropy and had a field separation between derivative extrema of 26 ± 1 Gauss. This radical is evidently from QP-C. These observations substantiate that the radical is immobilized and bound to a protein. The QP-S radical was demonstrated in the cytochrome b-c1-II complex only in the presence of more than a catalytic amount of succinate dehydrogenase and cytochrome b-c1. This signal was not antimycin a inhibitory. The signal amplitude paralleled the reconstitutive enzymic activity of succinate-cytochrome c reductase from succinate dehydrogenase and the cytochrome b-c1-II complex.  相似文献   

2.
Mitochondrial ubiquinol-cytochrome c reductase complex contains small amounts of succinate dehydrogenase. Estimates from electrophoresis indicate there is one dehydrogenase per eight complexes. This dehydrogenase transfers electrons to the b-c1 complex poorly, as judged by low succinate-ubiquinone and succinate-cytochrome c reductase activities. Electron transfer to the b-c1 complex is restored by reconstitution of the complex with phospholipid. This phospholipid dependent restoration of electron transfer indicates that either reconstitutive activity of the dehydrogenase is preserved under conditions where electron transfer is absent, or that addition of phospholipid allows one dehydrogenase to transfer electrons to multiple b-c1 complexes.  相似文献   

3.
The ubiquinone protein, QP-C, in reduced ubiquinone-cytochrome c reductase (the b?c1-III complex) shows a stable ubisemiquinone radical when the enzyme is reduced by succinate in the presence of catalytic amounts of succinate dehydrogenase and QP-S. At room temperature using EPR technique the redox titration of the b?c1-III complex in the presence of redox dyes or succinate/fumarate couple reveals that the ubisemiquinone radical has a midpoint potential of approximately +67 mV at pH 8.0. Further analysis yields E1 of +83 mV and E2 of +51 mV corresponding to (QH2QH·) and (QH·Q) or other electronated forms, respectively. The equilibrium radical concentration has been found to be affected both by pH and succinate/fumarate couple. At pH 9.0 the radical shows the maximal amplitude and stability. Below pH 7.0, little radical was detected. The electron spin relaxation behavior of ubisemiquinone radical, as examined by microwave power saturation, indicates that the ubisemiquinone radical of QP-C is somewhat isolated from other paramagnetic centers. The effects of phospholipids, QP-S, and other agents on ubisemiquinone radical formation as well as the enzymatic activity of QP-C have been studied in detail.  相似文献   

4.
QP-S, a ubiquinone (Q) protein, accepts electrons from succinate through succinate dehydrogenase (SDH). A new method has produced a preparation of QP-S which has a different amino acid composition and SDS gel electrophoretic pattern from that of the old preparation (Biochemistry 19, 3579-3585 (1980)). The new preparation contains less than 1 nmol heme/mg protein; the activity of the preparation was not proportional to its heme content. A thenoyltrifluoroacetone sensitive free radical signal was detected by EPR spectroscopy in succinate-Q reductase reconstituted from this QP-S and SDH; the characteristics of this species identify it as ubisemiquinone. At pH 7.4, the Em of the two electron step was about 70 mV with E1 = 5 mV and E2 = 125 mV. The properties of the radical differed slightly from those of "Qs" radical in more intact preparations (e.g. submitochondrial particles). The present is the simplest system in which such a succinate reducible ubisemiquinone free radical has been demonstrated.  相似文献   

5.
(1) Analysis of the data from steady-state kinetic studies shows that two reactions between cytochrome c and cytochrome c oxidase sufficed to describe the concave Eadie-Hofstee plots (Km ? 1 · 10?8M and Km ? 2 · 10?5M). It is not necessary to postulate a third reaction of Km ? 10?6M. (2) Change of temperature, type of detergent and type of cytochrome c affected both reactions to the same extent. The presence of only a single catalytic cytochrome c interaction site on the oxidase could explain the kinetic data. (3) Our experiments support the notion that, at least under our conditions (pH 7.8, low-ionic strength), the dissociation of ferricytochrome c from cytochrome c oxidase is the rate-limiting step in the steady-state kinetics. (4) A series of models, proposed to describe the observed steady-state kinetics, is discussed.  相似文献   

6.
Cytochrome P-450 was purified from liver microsomes of phenobarbital-pretreated rabbits to a specific content of 16 to 17 nmoles per mg of protein with a yield of about 10 %. The purified cytochrome yielded only a single protein band on sodium dodecylsulfate-urea-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 45,000 was estimated for the protein. The preparation was free of cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase activities. Aniline hydroxylase and ethylmorphine N-demethylase activities could be reconstituted upon mixing the purified cytochrome with an NADPH-cytochrome c reductase preparation (purified by a detergent method) and phosphatidyl choline.  相似文献   

7.
Phosphate transporter of bovine heart mitochondria was purified by solubilization of submitochondrial particles with octylglucoside and fractionation of the extract with ammonium sulfate. After reconstitution into liposomes the purified protein catalyzed phosphate transport which was sensitive to mersalyl and other SH reagents. Transport measured either as PiOH or PiPi exchange was proportional to protein concentration and time. The PiOH but not the PiPi exchange was stimulated several fold by valinomycin plus nigericin in the presence of K+. The reconstituted system provides a suitable assay during purification of the mitochondrial phosphate transporter.  相似文献   

8.
A protein named oxidation factor can be reversibly removed from succinate-cytochrome c reductase complex and shown to be required for electron transfer between succinate and cytochrome c. This protein is required for reduction of cytochrome c1 and, in the presence of antimycin, for reduction of both cytochromes b and c1. These results are consistent with a protonmotive Q cycle mechanism in which the oxidation factor catalyzes electron transfer from reduced quinone to cytochrome c1 and thus liberates from reduced quinone one of two protons required for energy conservation during electron transfer through the cytochrome b-c1 complex.  相似文献   

9.
Plasma membrane vesicles, isolated from ejaculated ram sperm, were found to contain Ca2+-activated Mg2+-ATPase and Ca2+ transport activities. Membrane vesicles that were exposed to oxalate as a Ca2+-trapping agent accumulated Ca2+ in the presence of Mg2+ and ATP. The Vmax for Ca2+ uptake was 33 nmol/mg protein per h, and the Km values for Ca2+ and ATP were 2.5 μM and 45 μM, respectively. 1 μM of the Ca2+ ionophore A23187, added initially, completely inhibited net Ca2+ uptake and, if added later, caused the release of Ca2+ previously accumulated. A Ca2+-activated ATPase was present in the same membrane vesicles which had a Vmax of 1.5 μmol/mg protein per h at free Ca2+ concentration of 10 μM. This Ca2+-ATPase had Km values of 4.5 μM and 110 μM for Ca2+ and ATP, respectively. This kinetic parameter was similar to that observed for uptake of Ca2+ by the vesicles. The Ca2+-ATPase activity was insensitive to ouabain. Both Ca2+ transport and Ca2+-ATPase activity were inhibited by the flavonoid quercetin. Thus, ram spermatozoa plasma membranes have both a Ca2+ transport activity and a Ca2+-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivity to quercetin.  相似文献   

10.
Flufenamate, a non-steroidal anti-inflammatory drug, is a powerful inhibitor of anion transport in the human erythrocyte (I50 = 6·10?7M). The concentration dependence of the binding to ghosts reveals two saturable components. [14C]Flufenamate binds with high affinity (Kd1 = 1.2·10?7M) to 8.5·105 sites per cell (the same value as the number of band 3 protein per cell); it also binds, with lower affinity (Kd2 = 10?4M) to a second set of sites (4.6·107 per cell). Pretreatment of cells with 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), a specific inhibitor of anion transport, prevents [14C]flufenamate binding only to high affinity sites. These results suggest that high affinity sites are located on the band 3 protein involved in anion transport. Extracellular chymotrypsin and pronase at low concentration cleave the 95 kDa band 3 into 60 kDa and 35 kDa fragments without affecting either anion transport or [14C]flufenamate binding. Splitting by trypsin at the inner membrane surface of the 60 kDa chymotryptic fragment into 17 kDa transmembrane fragment and 40 kDa water-soluble fragment does not affect [14C]flufenamate binding. In contrast degradation at the outer membrane surface of the 35 kDa fragment by high concentration of pronase or papain decreases both anion transport capacity and number of high affinity binding sites for [14C]flufenamate. Thus it appears that 35 kDa peptide is necessary for both anion transport and binding of the inhibitors and that the binding site is located in the membrane-associated domain of the band 3 protein.  相似文献   

11.
Turtle bladders bathed on both surfaces with identical HCO?3/CO2-rich, Cl?-free Na+ media and treated with ouabain and amiloride exhibit a transepithelial potential serosa electronegative to mucosa and a short-circuit current (Isc) which is a measure of the net luminal acidification rate. Addition of calcium ionophore A23187 (10 μM) to the mucosal side of the epithelium rapidly reverses the direction of the potential difference and Isc and decreases tissue resistance. The resulting positive Isc resembles that previously observed in response to isobutylmethylxanthine (IBMX) and cAMP analogs. Reversal of the Isc is enhanced in bladders from severely alkalotic turtles. In contrast, in severely acidotic turtles, ionophore A23187 decreases, but does not reverse, the Isc. The data suggest that, like IBMX and cAMP analogs, the Ca ionophore stimulates an electrogenic alkalinization mechanism, but, unlike the former agents inhibits the concurrent acidification process as well.  相似文献   

12.
The uptake of [32P]phosphate into human red blood cells was inhibited (Ki = 0.6 mM) by the sulfhydryl reagent 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB). 2-Nitro-5-thiobenzoic acid (NTB), the reduced form of DTNB, was a less potent inhibitor (Ki = 7 mM). The inhibition of anion transport by DTNB could be reversed by washing DTNB-treated cells with isotonic buffer, or by incubating DTNB-treated cells with 2-mercaptoethanol, which converted DTNB to NTB. DTNB competitively inhibited the binding of 4-[14C]-benzamido-4′-aminostilbene-2,2′-disulfonate, a potent inhibitor of anion transport (Ki = 1?2 μM), to band 3 protein in cells and ghost membranes. These results suggest that the stilbene-disulfonate binding site in band 3 protein can readily accommodate the organic anion DTNB, and that inhibition by DTNB was not due to reaction with an essential sulfhydryl group.  相似文献   

13.
Yael A. Ilan  Gidon Czapski  Dan Meisel 《BBA》1976,430(2):209-224
The method of determination of Redox potentials of radicals, using the pulse radiolysis technique, is outlined. The method is based on the determination of equilibrium constants of electron transfer reactions between the radicals and appropriate acceptors. The limitations of this technique are discussed.The redox potentials of several quinones-semiquinones are calculated, as well as the standard redox potential of the peroxy radical. EoO2O2? = ?0.33 V and the redox oxidation properties of the peroxy radical in various systems and pH are discussed. The value determined for the redox potentials of O2O2? is higher by more than 0.2 V than earlier estimates, which has important implications on the possible role of O2? in biological processes of O2 fixation.  相似文献   

14.
15.
研究了羧基修饰剂DCCD对泛醌结合蛋白QPs重组活力的影响;用0.1%TritonX-100增溶QPs后,用250mol/molQPs的DCCD于室温处理5min,处理后的QPs丧失约50%与琥珀酸脱氢酶的重组活力。先将QPs与琥珀酸脱氢酶重组再用DCCD处理没有发现重组的琥珀酸泛醌还原酶活性的降低。此结果说明QPs中存在重组活性必需的羧基。  相似文献   

16.
A proline shuttle for oxidation of extramitochondrial NADH was reconstituted from soluble and mitochondrial fractions of blowfly (Phormiaregina) flight muscle. The soluble fraction catalyzed reduction of Δ′-pyrroline-5-carboxylate to proline via the action of Δ′-pyrroline-5-carboxylate reductase (EC 1.5.1.2). The reaction required NADH as hydrogen donor, NAD (P) H being ineffective in this regard. Mitochondria catalyzed regeneration of Δ′-pyrroline-5-carboxylate from proline via action of proline oxidase. The capacity of the shuttle to operate under conditions of possible competition for Δ′-pyrroline-5-carboxylate between Δ′-pyrroline-5-carboxylate reductase and Δ′-pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12) was incestigated. Results of these investigations indicate that dehydrogenase activity does not significantly interfere with shuttle activity.  相似文献   

17.
Peter Nicholls 《BBA》1976,430(1):13-29
1. Formate inhibits cytochrome c oxidase activity both in intact mitochondria and submitochondrial particles, and in isolated cytochrome aa3. The inhibition increases with decreasing pH, indicating that HCOOH may be the inhibitory species.2. Formate induces a blue shift in the absorption spectrum of oxidized cytochrome aa3 (a3+a33+) and in the half-reduced species (a2+a33+). Comparison with cyanide-induced spectral shifts, towards the red, indicates that formate and cyanide have opposite effects on the aa3 spectrum, both in the fully oxidized and the half-reduced states. The formate spectra provide a new method of obtaining the difference spectrum of a32+ minus a33+, free of the difficulties with cyanide (which induces marked high → low spin spectral shifts in cytochrome a33+) and azide (which induces peak shifts of cytochrome a2+ towards the blue in both α- and Soret regions).3. The rate of formate dissociation from cytochrome a2+a33+-HCOOH is faster than its rate of dissociation from a3+a33+-HCOOH, especially in the presence of cytochrome c. The Ki for formate inhibition of respiration is a function of the reduction state of the system, varying from 30 mM (100% reduction) to 1 mM (100% oxidation) at pH 7.4, 30 °C.4. Succinate-cytochrome c reductase activity is also inhibited by formate, in a reaction competitive with succinate and dependent on [formate]2.5. Formate inhibition of ascorbate plus N,N,N′,N′-tetramethyl-p-phenyl-enediamine oxidation by intact rat liver mitochondria is partially released by uncoupler addition. Formate is permeable through the inner mitochondrial membrane and no differences in ‘on’ or ‘off’ inhibition rates were observed when intact mitochondria were compared with submitochondrial particles.6. NADH-cytochrome c reductase activity is unaffected by formate in submitochondrial particles, but mitochondrial oxidation of glutamate plus malate is subject both to terminal inhibition at the cytochrome aa3 level and to a slow extra inhibition by formate following uncoupler addition, indicating a third site of formate action in the intact mitochondrion.  相似文献   

18.
The kinetics of pyruvate transport across the isolated red blood cell membrane were studied by a simple and precise spectrophotometric method: following the oxidation of NADH via lactate dehydrogenase trapped within resealed ghosts. The initial rate of pyruvate entry was linear. Influx was limited by saturation at high pyruvate concentration. Pyruvate influx was greatly stimulated by increasing ionic strength in the outer but not the inner aqueous compartment. The Km ranged from 15.0 mM at μ = 0.05 to 3.7 mM at μ = 0.01, while the V went from 0.611 · 10-15 to 0.137 · 10-15mol · min-1 · ghost-1. Ionic strength was shown to affect the translocation step and not pyruvate binding. The energy of activation of pyruvate flux into resealed ghosts was 25 kcal/mol, similar to that found in intact red blood cells. Inhibitors of pyruvate influx included such anions as thiocyanate, chloride, bicarbonate, α-cyanocinnamate, salicylate and ketomalonate (but not acetate); noncompetitive inhibitors were phloretin, 1-fluoro-2,4-dinitrobenzene, 4-acetamido-4′-isothiocyanate-stilbene-2,2′-disulfonic acid and o-phenanthroline/CuSO4 mixtures. The last reagent, known to induce disulfide links in certain membrane proteins, blocked the ionic strength stimulation of pyruvate influx in this study.  相似文献   

19.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

20.
In contrast to membrane vesicles of wild-type strains which become leaky to protons on removal of the F1 ATPase, those of the mutant Escherichia, coli, NI44, which lacks the F1 ATPase, can maintain a proton gradient. A normal N,N′-dicyclohexylcarbodiimide (DCCD)-binding polypeptide is present in the F0 portion of the ATPase complex of the mutant. However, the 19000 molecular weight component of F0 is absent. We conclude that the latter polypeptide, in addition to the DCCD-binding polypeptide, is required for a functional proton channel in F0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号