首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of RCMF-magnetic therapy apparatus on signal substances was studied. The radioimmunoassay (RIA) suggested that the magnetic field increased p-endorphin markedly in plasma. ELISA indicated that the magnetic field inhibited vomiting reaction induced by chemotherapy drug, with reversible decrease of serotonin (5-HT) level in brains, small intestine tissue and serum. Furthermore, the bioeffect of magnetic fields on 5-HT level presented a typical window effect and post-effect, and the inhibitory effect of magnetic field on the emesis was parallel to the decrease level of 5-HT. This result implied that the decrease of 5-HT might be the basis of rotating constant magnetic field (RCMF) inhibiting drug-induced emesis. The nitric acid reductase-spec-trophotometry and nicotinamide adenine dinucleotide-diaphorase/arginine-vasopressin (AVP) cytochemistry technique showed that the magnetic field induced nitric oxide (NO) increase in hypo-thalamus and the high NO(A) level lasted for 3 hours. The results sugg  相似文献   

2.
By employing nitric acid reductase-spectrophotometry and NADPH-diaphorase/AVP cytochemistry technique, the effects of magnetic field on NO in hypothalamus and relations to Paraventricular Nucleus (PVN), Periventricular Nucleus (PEN), Supraoptic Nucleus (SON) and Suprachiasmatic Nucleus (SCN) were investigated. It was found that the NADPH-d positive neurons and some NADPH-d/AVP dually stained neurons existed in PVN, PEN, SON, but not in SCN, and the magnetic field induced NO (OD) increase there and the high NO (OD) level lasted for 3 hours. The results suggested that NO (OD) increase after the treatment of magnetic field in hypothalamus may result from strong expression of NOergic neurons in the PVN, PEN and SON. The coexistance of NO and AVP may play important role in the regulation of endocrine and neuroendocrine by the magnetic field.  相似文献   

3.
应用硝酸还原酶反应—分光光度法测定和NADPH-d组织化学技术,对磁场处理后丘脑下部一氧化氮量的变化及其可能的原因进行了研究,发现磁场可促使丘脑下部一氧化氮量(OD值)显著升高,并具有显著滞后效应。NADPH-d阳性神经细胞及NADPH-d和血管加压素(AVP)双染阳性神经细胞集中分布在丘脑下部室旁核、室周核和视上核,但不存在 于视交叉上核,提示室旁核、室周核和视上核一氧化氮能神经细胞是丘脑下部的一氧化氮的主要来源。磁场处理后大鼠丘脑下部一氧化氮含量(OD值)较正常对照组显著升高应归因于这些神经细胞受磁场作用表达增强。一氧化氮和血管加压素的共存可能对磁场调节内分泌具有一定意义。  相似文献   

4.
5.
6.
Summary. Neurons of the hypothalamo-neurohypophyseal system (HNS) are known to contain high amounts of neuronal nitric oxide (NO) synthase (nNOS). NO produced by those neurons is commonly supposed to be involved as modulator in the release of the two nonapeptides vasopressin (AVP) and oxytocin into the blood stream. Previous studies showed that forced swimming fails to increase the release of AVP into the blood stream while its secretion into the hypothalamus is triggered. We investigated here whether hypothalamically acting NO contributes to the control of the AVP release into blood under forced swimming conditions. Intracerebral microdialysis and in situ hybridization were employed to analyze the activity of the nitrergic system within the supraoptic nucleus (SON), the hypothalamic origin of the HNS. A 10-min forced swimming session failed to significantly alter the local NO release as indicated both by nitrite and, the main by-product of NO synthesis, citrulline levels in microdialysis samples collected from the SON. Microdialysis administration of NO directly into the SON increased the concentration of AVP in plasma samples collected during simultaneous forced swimming. In an additional experiment the effect of the defined stressor exposure on the concentration of mRNA coding for nNOS within the SON was investigated by in situ hybridization. Forced swimming increased the expression of nNOS mRNA at two and four hours after onset of the stressor compared to untreated controls. Taken together, our results imply that NO within the SON does not contribute to the regulation of the secretory activity of HNS neurons during acute forced swimming. Increased nNOS mRNA in the SON after forced swimming and the increase in AVP release in the presence of exogenous NO under forced swimming points to a possible role of NO in the regulation of the HNS under repeated stressor exposure.Current address: Departments of Behavioral Neuroscience and Neurology, Oregon Health & Science University, Portland, OR 97239, U.S.A.  相似文献   

7.
Posterior pituitary hormone secretion and central neural expression of the immediate-early gene product c-Fos was examined in adult ferrets after intravenous administration of CCK octapeptide. Pharmacological doses of CCK (1, 5, 10, or 50 microg/kg) did not induce emesis, but elicited behavioral signs of nausea and dose-related increases in plasma vasopressin (AVP) levels without significant increases in plasma oxytocin (OT) levels. CCK activated neuronal c-Fos expression in several brain stem viscerosensory regions, including a dose-related activation of neurons in the dorsal vagal complex (DVC). Activated brain stem neurons included catecholaminergic and glucagon-like peptide-1-positive cells in the DVC and ventrolateral medulla. In the forebrain, activated neurons were prevalent in the paraventricular and supraoptic nuclei of the hypothalamus and also were observed in the central nucleus of the amygdala and bed nucleus of the stria terminalis. Activated hypothalamic neurons included cells that were immunoreactive for AVP, OT, and corticotropin-releasing factor. Comparable patterns of brain stem and forebrain c-Fos activation were observed in ferrets after intraperitoneal injection of lithium chloride (LiCl; 86 mg/kg), a classic emetic agent. However, LiCl activated more neurons in the area postrema and fewer neurons in the nucleus of the solitary tract compared with CCK. Together with results from previous studies in rodents, our findings support the view that nauseogenic treatments activate similar central neural circuits in emetic and nonemetic species, despite differences in treatment-induced emesis and pituitary hormone secretion.  相似文献   

8.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

9.
Serotonin-induced anorexia has long been recognized as an important part of the CNS mechanisms controlling energy balance. More recently, interleukin-1beta and nitric oxide have been suggested to influence this control, possibly through modulation of hypothalamic serotonin. The present work aimed at investigating the interaction of these systems. We addressed whether 5-HT is affected during IL-1beta-induced anorexia in obese Zucker rats and the influence of the central NO system on this IL-1beta/5-HT interaction. Using microdialysis, we observed that an intracerebroventricular injection of 10 ng IL-1beta significantly stimulated 5-HT extracellular levels in the VMH, with a peak variation of 102+/-41% above baseline. IL-1beta also significantly reduced the 4-h feeding by 33% and the 24-h feeding by 42%. Contrarily, these effects were absent when IL-1beta was injected 2 h after the i.c.v. administration of 20 microg of the NO precursor L-arginine. The results suggest that, in obese Zucker rats, activation of the serotonergic system in the medial hypothalamus participates in IL-1beta-induced anorexia. Since L-arginine, probably through NO stimulation, abolished both the anorexia and the serotonergic activation, it can be proposed that the NO system, either directly or indirectly, counteracts IL-1beta anorexia. The hypothalamic serotonergic system is likely to mediate this NO effect.  相似文献   

10.
In this study, two regions containing 5-HT immunopositive neurons were observed in the hypothalamus of fetal (18th fetal day) and neonatal rats (9th postnatal day) after pretreatment with the monoamine oxidase inhibitor, pargyline, and the amino acid precursor of the 5-HT synthesis, l-tryptophan. They were localized in the anterolateral hypothalamus and the dorso-medial hypothalamic nucleus. Immunostaining was completely blocked by the preliminary injection of fluoxetine, a specific uptake inhibitor of the serotoninergic neurons. Thus, the 5-HT immunostaining of hypothalamic neurons reported in this study is accounted for by the specific uptake of the 5-HT from the environment rather than by its synthesis from l-tryptophan.  相似文献   

11.
Nitric oxide (NO) is a short-lived radical that functions as a neurotransmitter in the central nervous system and plays a physiological role in the regulation of hypothalamic–pituitary–adrenal axis and vasopressinergic axis. In the present study, we aimed to investigate the interaction between the generation of NO and vasopressin (AVP) and corticosterone release after 3 days of water deprivation in rats. Animals were previously treated with intraperitoneal (i.p.) saline or l-nitro-arginine methyl ester (L-NAME) injection. l-NAME is a nonspecific inhibitor of nitric oxide synthases. In control rats given i.p. saline or l-NAME, hypothalamic, pituitary, and plasma AVP levels and plasma corticosterone did not change from baseline levels (p > 0.05). Three days of water deprivation increased significantly the corticosterone levels in plasma (p < 0.01) and AVP levels in hypothalamus and plasma (p < 0.01), but not in pituitary, which showed a significant decrease. These variations were concomitant with the elevation of nitrates/nitrates in plasma. l-NAME injection abolished significantly (p < 0.01) the elevation of plasma corticosterone and hypothalamic AVP levels induced by water deprivation. These findings showed that in water-deprived rats, nitric oxide synthase inhibition by l-NAME inhibits corticosterone and vasopressin release, suggesting a potent stimulatory role of NO.  相似文献   

12.
Free radicals are essential for the vasopressin (AVP) response to plasmatic hyperosmolarity. Noradrenergic afferents are the major projections on the supraoptic nucleus (SON) of the hypothalamus and stimulate the expression of AVP via a nitric oxide (NO) pathway. In this study, we investigated the mechanisms linking free radicals and noradrenaline (NA)-induced regulation of AVP. Analysis of Tg8 transgenic mice, invalidated for the monoamine oxidase-A gene and with consequently high levels of brain monoamines and AVP in the SON, showed that free radicals are more abundant in their SON than in that of wild-type mice (WT). Antioxidant superoxide dismutase 1 and 2 and catalase enzyme activities were also higher in these mice than in WT. This may explain the observed absence of cytotoxicity that would otherwise be associated with such high level of free radicals. Treatment of Tg8 mice with α-MPT, a blocking agent for NA synthesis, decreased both the production of free radicals and the AVP levels in the SON. Furthermore, incubation of ex vivo slices including the SON with NA increased the production of free radicals and AVP levels in wild-type mice. When NA was associated with α-lipoic acid, an antioxidant blocking the production of free radicals, AVP remained at its control level, indicating that free radicals are required for the effect of NA on the expression of AVP. In slices incubated with SNP, a producer of NO, free radicals and AVP levels increased. When NA was associated with L-NAME (a NO synthase blocker), the levels of free radicals and AVP were the same as in controls. Thus, the noradrenaline–NO pathway, which stimulates the expression of vasopressin, involves free radicals. This study provides further evidence of the physiological importance of free radicals, which should no longer be considered solely as cytotoxic factors.  相似文献   

13.
The effect of melatonin treatment on time-of-day variations in hypothalamic serotonin (5-HT) and dopamine (DA) turnover was studied in rats treated with Freund's complete adjuvant (FCA). Animals received s.c. injections of 30 æg of melatonin or vehicle 1 h before lights off for 11 days. On day 10 of treatment, FCA or its vehicle was s.c. injected, and 2 days later, the rats were killed at 6 different time intervals throughout a 24-hour cycle. Hypothalamic 5-HT, 5-hydroxyindole-3-acetic acid (5-HIAA), DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were measured by HPLC. 5-HT and DA turnover were estimated from the 5-HIAA/5-HT and DOPAC/DA ratios, respectively. In the anterior hypothalamus, time-of-day variation in 5-HT turnover was suppressed by FCA, an effect counteracted by melatonin treatment. Melatonin also prevented FCA effect on medial hypothalamic 5-HT turnover, while in the posterior hypothalamus, similar daily variations of 5-HT turnover were found in all experimental groups. As far as DA turnover, FCA or melatonin administration suppressed its daily variations in the anterior hypothalamus. Time-of-day variations in medial hypothalamic DA turnover were similar in all groups while only rats treated with melatonin and FCA or its vehicle exhibited significant daily changes of DA turnover in the posterior hypothalamus. Results indicate that melatonin treatment affects partly the 24-hour pattern of variation of hypothalamic 5-HT and DA turnover at an early phase of FCA arthritis in rats.  相似文献   

14.
Since the thyrotropin-releasing hormone (TRH) can modulate the processes of vasopressin (AVP) and oxytocin (OT) biosynthesis and release mainly at the hypothalamo-neurohypophysial level, the present experiments were undertaken to estimate whether TRH, administered intravenously in different doses, modifies these mechanisms under conditions of osmotic stimulation, brought about by dehydration. AVP and OT contents in the hypothalamus and neurohypophysis as well as plasma levels of AVP, OT, free thyroxine (FT4) and free triiodothyronine (FT3) were studied after intravenously TRH treatment in euhydrated and dehydrated for two days male rats. Under conditions of equilibrated water metabolism TRH diminished significantly the hypothalamic and neurohypophysial AVP and OT content but was without the effect on plasma oxytocin level; however, TRH in a dose of 100 ng/100 g b.w. raised plasma AVP level. TRH, injected i.v. to dehydrated animals, resulted in a diminution of AVP content in the hypothalamus but did not affect the hypothalamic OT stores. After osmotic stimulation, neurohypophysial AVP and OT release was significantly restricted in TRH-treated rats. Under the same conditions, injections of TRH were followed by a significant decrease of plasma OT level. I.v. injected TRH enhanced somewhat FT3 concentration in blood plasma of euhydrated animals but diminished FT4 plasma level during dehydration. Data from the present study suggest that TRH displays different character of action on vasopressin and oxytocin secretion in relation to the actual state of water metabolism.  相似文献   

15.
The colchicine-induced accumulation of vasopressin (AVP) and oxytocin (OXT) has recently been applied to estimate the synthesis and turnover rates for these neuropeptides in whole rat hypothalamus. In the present studies, this pharmacologic procedure has been examined as a potential method for estimating hypothalamic somatostatin (SRIF) synthesis rate, and evaluated further for its utility in estimating nonapeptide synthesis in individual hypothalamic nuclei. Adult male rats received a single injection of colchicine (8 micrograms) into the third ventricle under pentobarbital anesthesia. Twenty-four hr later, immunoreactive (IR) levels of AVP and OXT increased considerably, as previously noted. Hypothalamic IR-SRIF levels, however, were unaffected. The absolute increases in IR-AVP and IR-OXT were greatest in the supraoptic nucleus (SON), with smaller increments in the para/periventricular hypothalamus (PVH) and the median eminence (ME). IR-SRIF levels showed no changes in the PVH or the ME. As a test, the method was applied to the detection of changes in AVP synthesis in diabetic rats. The colchicine procedure reported increases in AVP synthesis in both the SON and PVH in diabetic animals, a result compatible with that obtained previously for whole hypothalamus using radiolabeled procedures. Together, the results indicate that the colchicine procedure is useful in detecting changes in the syntheses of some (AVP and OXT) but not all (SRIF) neuropeptides, and that when applicable, the method is sufficiently sensitive to detect changes in small hypothalamic regions. The method may prove useful in estimating changes in peptide synthesis analogous to that used for serotonin and dopamine; e.g., 5-hydroxytryptophan and dopa accumulation following inhibition of aromatic L-amino acid decarboxylase.  相似文献   

16.
Shortly after administration of 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (6-MeOTHBC) and yohimbine to normal or hypothyroid rats [the latter exhibiting chronically elevated levels of serotonin (5-HT) neuronal activity in the hypothalamus] there was a highly significant increase in hypothalamic noradrenaline (NA) activity and in ACTH release concomittant with a reduction in hypothalamic 5-HT activity (P less than 0.01) and in growth hormone (GH) (P less than 0.01) and in thyroid stimulating hormone (TSH) (P less than 0.01) release from the pituitary. Both compounds caused an increase in hypothalamic dopamine (DA) metabolism and in pituitary prolactin (PRL) release in normal rats (P less than 0.01) but only yohimbine exerted this action in hypothyroid rats. Lower doses of 6-MeOTHBC exerted a relatively specific effect in hypothyroid rats, reducing (P less than 0.01) 5-HT neuronal activity in parallel with pituitary TSH secretion (P less than 0.05). While gross effects of 6-MeOTHBC and yohimbine were similar with respect to their effects on NA and 5-HT status in the hypothalamus, there were quantitative differences. 6-MeOTHBC always caused a greater decrease in 5-HT turnover and a lesser increase in NA turnover than did yohimbine. On the basis of these studies we suggest that the effect of tetrahydro-beta-carboline-related alkaloids on pituitary hormone release may be due to their influence on hypothalamic monoamine status and the subsequent alteration of the hypothalamic-pituitary control system.  相似文献   

17.
Action of norepinephrine (NE), serotonin (5-HT) and dopamine (DA) in the hypothalamus have been reported to play key roles in several homeostatic functions, including thermoregulation. The purpose of this study was to clarify differences in concentrations of NE, 5-HT and DA in several hypothalamic regions after cold exposure of different durations. Rats were exposed to a cold environment (5 °C) for 3 hours (3H), 1 day (1D), 7 days (7D), 14 days (14D), or 28 days (28D). After cold exposure, each hypothalamic region was immediately extracted and homogenized. NE, 5-HT and DA in the extract were measured by high-performance liquid chromatography. We observed marked differences in the concentration of NE in each hypothalamic region after cold exposures. NE in the preoptic area was high only in the 3H group, while it was elevated in the 7D, 14D and 28D groups in the ventromedial hypothalamus. On the other hand, NE in the posterior hypothalamus was low in the 3H, 1D, 7D and 14D groups. Cold exposure did not affect concentrations of 5-HT and DA in these hypothalamic regions. Our results suggest the involvement of NE in each hypothalamic region in maintenance of body temperature, and that the neuronally active site in the hypothalamus seems to change during cold acclimation.  相似文献   

18.
Running becomes a stress, termed running stress, if it persists above the lactate threshold (LT) and results in enhanced plasma ACTH level in humans. Although the exact underlying regulation mechanism is still uncertain, hypothalamic AVP has been shown to play a dominant role in running-induced ACTH release. It is still not known, however, whether running stress activates the hypothalamic AVP-containing neurons that are involved in the activation of the ACTH response. For this reason, we applied our rat running stress model, in which both plasma ACTH and osmolality levels increase just above LT running (supra-LT running), to delineate which hypothalamic AVP neurons were responsive to running stress. Rats were previously habituated to running and then subjected to a 30-min run either just below or above the LT. Plasma samples were collected from these animals to determine ACTH and osmolality levels. Brains were prepared for immunocytochemistry for both AVP/Fos in the hypothalamus and enzyme immunoassay for the stalk median eminence (SME) AVP content. Only supra-LT running resulted in an increase in the number of Fos/AVP-immunoreactive neurons in both the parvocellular paraventricular nucleus (pPVN) and the magnocellular supraoptic nucleus (SON) accompanied by increased ACTH and plasma osmolality levels. Similarly, running reduced the SME content of the AVP. We thus found that AVP-containing neurons located in both the pPVN and SON are responsive to running stress just above the LT.  相似文献   

19.
Acute alcohol intoxication (AAI) attenuates the AVP response to hemorrhage, contributing to impaired hemodynamic counter-regulation. This can be restored by central cholinergic stimulation, implicating disrupted signaling regulating AVP release. AVP is released in response to hemorrhage and hyperosmolality. Studies have demonstrated nitric oxide (NO) to play an inhibitory role on AVP release. AAI has been shown to increase NO content in the paraventricular nucleus. We hypothesized that the attenuated AVP response to hemorrhage during AAI is the result of increased central NO inhibition. In addition, we predicted that the increased NO tone during AAI would impair the AVP response to hyperosmolality. Conscious male Sprague-Dawley rats (300-325 g) received a 15-h intragastric infusion of alcohol (2.5 g/kg + 300 mg·kg(-1)·h(-1)) or dextrose prior to a 60-min fixed-pressure hemorrhage (~40 mmHg) or 5% hypertonic saline infusion (0.05 ml·kg(-1)·min(-1)). AAI attenuated the AVP response to hemorrhage, which was associated with increased paraventricular NO content. In contrast, AAI did not impair the AVP response to hyperosmolality. This was accompanied by decreased paraventricular NO content. To confirm the role of NO in the alcohol-induced inhibition of AVP release during hemorrhage, the nitric oxide synthase inhibitor, nitro-l-arginine methyl ester (l-NAME; 250 μg/5 μl), was administered centrally prior to hemorrhage. l-NAME did not further increase AVP levels during hemorrhage in dextrose-treated animals; however, it restored the AVP response during AAI. These results indicate that AAI impairs the AVP response to hemorrhage, while not affecting the response to hyperosmolality. Furthermore, these data demonstrate that the attenuated AVP response to hemorrhage is the result of augmented central NO inhibition.  相似文献   

20.
Using immunohistochemical techniques, we demonstrated oxytocin (OT) and vasopressin (AVP) neurons in the cat hypothalamus. The OT immunoreactive neurons were found mainly in the paraventricular nucleus, supraoptic nucleus and dorsal accessory group located lateral to the fornix. In addition to these hypothalamic structures, the AVP immunoreactive neurons were observed in the suprachiasmatic nucleus, ventral accessory group located in the retrochiasmatic area and lateral accessory group, dorsal to the supraoptic nucleus caudally, and ventral to the medial part of the internal capsule rostrally. We further demonstrated a different localization of the OT and AVP immunoreactive neurons in the paraventricular and supraoptic nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号