首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

2.
Trace metals such as Zn, Cu, and Fe are essential for life; differently, no biochemical function is known for Cd. Changes in dietary metal concentrations can cause deficiency or toxicity. Studies on trace elements in cat are lacking. This paper aimed to analyze Zn, Cu, Fe and Cd concentrations in liver and kidney of pathological domestic cat and to isolate metallothionein (MT) in these tissues. It was not possible to explore a possible correlation between metal concentrations and pathologies because the incidence for each of them was too low. Fe was the most abundant metal; in particular, the liver accumulates average Fe concentrations one order of magnitude higher than Zn and Cu, ranging from 66.75 and 1,444.23 μg/g. Significantly, higher levels of Fe were found in the liver of elder animals. Zn concentrations varied between 26.31 and 84.78 μg/g in the liver whereas in the kidney, ranged between 7.69 and 71.15 μg/g. Cu concentrations were between 2.37 and 112.91 μg/g in liver and between 2.12 and 9.85 μg/g in kidney. Cd was the least abundant metal with the exception of the kidney of the oldest cats where it reached a maximum of 13.71 μg/g. Gel-filtration metal distribution profiles from cytosolic extracts revealed the presence of Cd, Cu, Zn thioneins either in the liver or in the kidney. Because tissue samples were taken from pathological cats from different breed and age, care must be taken to use these data as a baseline profile of trace elements in healthy animals. Our results are indicative that for some specimens the feed levels of Fe and Cu could be higher than the optimal dietary intake and in few cats, there was also an exposure to Cd that was counteracted by MT biosynthesis.  相似文献   

3.
To evaluate the species specificity of Cd accumulation and the relationship of Cd with other essential metals and metallothionein (MT), the concentrations of Cd, Zn, Cu, and Fe in the liver and kidney and the MT concentrations in the soluble fractions of the liver and kidney were determined in Cd-uncontaminated nonhuman primates (11 species, 26 individuals) kept in a zoo and two wild-caught Japanese macaques. The compositions of metal-binding proteins in the soluble fractions were also investigated by high-performance liquid chromatography (HPLC). The hepatic Cd concentration was 0.03–14.0 μg/g and the renal Cd concentration was 0.35–99.0 μg/g, both varying greatly and being higher in nonhuman primates, which were more closely related to man. The hepatic Zn concentration was 24.0–176 μg/g and the renal Zn concentration was 13.5–138 μg/g, showing 7- to 10-fold differences, and a correlation (r=0.558, p<0.01) was found between renal Zn and renal Cd concentrations. It was proved that in the liver, MT is more closely correlated with Zn (r=0.795, p<0.001) than with Cd (r=0.492, p<0.01) and that in the kidney MT is correlated with both Cd (r=0.784, p<0.001) and Zn (r=0.742, p<0.001). HPLC analysis of metals bound to MT-like protein in chimpanzees, de Brazza’s monkeys, and Bolivian squirrel monkeys showed that more than 90% of Cd in both the liver and kidney, approx 40% of Zn in liver and 28–69% of Zn in kidney were bound to MT-like protein. The higher percentage Zn was bound to high-molecular protein.  相似文献   

4.
The in vitro affinity of metals for metallothionein (MT) is Zn less than Cd less than Cu less than Hg. In a previous study Cd(II) and Hg(II) displaced Zn(II) from rat hepatic Zn7-MT in vivo and ex vivo (Day et al., 1984, Chem. Biol. Interact. 50, 159-174). The ability of Cd(II) or Hg(II) to displace Zn(II) and/or Cu(II) from metallothionein in copper-preinduced rat liver (Zn, Cu-MT) was assessed. Cd(II) and Hg(II) can displace zinc from (Zn, Cu)-MT both in vivo and ex vivo. The in vitro displacement of copper from MT by Hg(II) was not confirmed in vivo and ex vivo. Cd(II) treatment did not alter copper levels in (Zn, Cu)-MT, as expected. Hg(II) treatment, however, did not decrease copper levels in MT, but rather increased them. The sum of the copper increase and mercury incorporation into MT matched the zinc decrease under in vivo conditions and actually exceeded the zinc decrease under ex vivo conditions. Short-term exposure of rat liver to exogenous metals can result in incorporation of these metals into MT by displacement of zinc from pre-existing MT. Displacement of copper from pre-existing MT by mercury, as predicted by in vitro experiments, was not confirmed under the conditions of our in vivo and ex vivo experiments. This result is explainable based on the differing affinities and/or preferences of the two metal clusters in MT.  相似文献   

5.
Since the toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic or essential metals, studies addressing the chemical interactions between trace elements are increasingly important. In this study correlations between the main toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements were evaluated in the tissues (liver, kidney and muscle) of 120 cattle from NW Spain, using Spearman rank correlation analysis based on analytical data obtained by ICP-AES. Although accumulation of toxic elements in cattle in this study is very low and trace essential metals are generally within the adequate ranges, there were significant associations between toxic and essential metals. Cd was positively correlated with most of the essential metals in the kidney, and with Ca, Co and Zn in the liver. Pb was significantly correlated with Co and Cu in the liver. A large number of significant associations between essential metals were found in the different tissues, these correlations being very strong between Ca, Cu, Fe, Mn, Mo and Zn in the kidney. Co was moderately correlated with most of the essential metals in the liver. In general, interactions between trace elements in this study were similar to those found in polluted areas or in experimental studies in animals receiving diets containing high levels of toxic metals or inadequate levels of nutritional essential elements. These interactions probably indicate that mineral balance in the body is regulated by important homeostatic mechanisms in which toxic elements compete with the essential metals, even at low levels of metal exposure. The knowledge of these correlations may be essential to understand the kinetic interactions of metals and their implications in the trace metal metabolism.  相似文献   

6.
Several studies have described mercury toxicity and the role of metallothioneins (MT) in the detoxification and regulation of metal homeostasis. However, little data exist on this topic during the specific post-natal developmental phase in young mammals. This developmental phase is particularly important since young animals are more sensitive to toxicants than adults. The objective of this work was to investigate whether MT participates in the mechanism of protection conferred by zinc pre-treatment on the toxic effects induced by mercury in neonate rats. Pups were exposed to ZnCl(2) (5 doses of 27 mg/kg/day, s.c.) and subsequently to HgCl(2) (5 doses of 5 mg/kg/day, s.c.); metal (Zn and Hg) and MT contents were analyzed in the liver, kidney, and blood. MT was induced in the liver and kidney of pups of both Zn-sal and Zn-Hg groups, although the greatest increase was in neonates exposed to Zn only. A direct relationship exists between MT and metals for both hepatic and renal tissues, which indicates that the increase in metal levels occurs in parallel to the increase in MT content. Although the heat-treated cytosolic fraction is rich in MT and metals, higher Zn and Hg contents were detected in the insoluble fraction of all tissues. These results suggest that MT is, at least in part, responsible for preventing Hg accumulation in the liver and blood and decreasing renal toxicity.  相似文献   

7.
Metallothioneins (MTs) were induced in Chang liver cells by the metals, Zn, Cu and Cd, and the glucocorticoid hormone, dexamethasone. When 116 microM Zn, 32 microM Cu and 18 microM Cd, and 10(-7) M dexamethasone, respectively, were administered for 9 h, MTs induced by each inducer in the cells reached maximum levels. The maximum accumulation of MT level induced by dexamethasone was the lowest of the four inducers investigated; the levels induced by Zn, Cu and Cd were 4.7, 1.2 and 1.5 times of that induced by dexamethasone. When dexamethasone was added to the cells together with the heavy metals (Zn, Cu and Cd), dexamethasone had an additive effect on the maximum MT accumulations induced by heavy metals as compared to when induction was conducted using one of heavy metals alone or by dexamethasone alone. However, dexamethasone did almost not effect the metal accumulations in the cells, although the maximum MT levels induced by heavy metal increased by dexamethasone. These results suggest that the process of MT induction by heavy metals and that by dexamethasone are independent of one another. When dexamethasone was added to the cells together with a high concentration of Cu (32 microM) induced the maximum MT accumulation, Cu transport into the cells decreased by 20-40% of that into non-treated cells, which was statistically significant.  相似文献   

8.
1. Repeated injections of zinc (Zn) and copper (Cu) into the frog Xenopus laevis caused accumulations of the respective metals in the liver and kidney. 2. The accumulated metals in the liver supernatant fractions were present as Zn- and Cu-binding proteins of the same properties as that of metallothionein (MT) induced by cadmium (Cd) injections. 3. The affinity of Zn, Cu and Cd ions to the metal-binding protein was in the decreasing order of Cu, Cd and Zn. 4. The Xenopus MT induced by Cd was unstable and disrupted easily to give two peaks as if the MT consists of two isometallothioneins.  相似文献   

9.
Cd induced changes of Zn and Cd distribution in the liver and kidneys were studied in relation to Cd metallothionein (MT) synthesis. Wistar male rats were given CdCl2 by sc injection of .8, 1.5, and 3.0 mg Cd/kg three times a week for three weeks. Cd levels of liver and kidneys increased with the increment of Cd dosage and 80–90% of Cd was found in the cytosol. The MT fractions contained 80–89% cytosolic Cd in the liver and 55–75% Cd in the kidneys. Zn concentrations in the liver increased following Cd administration, But Zn in the kidneys showed only slight increase. There was a distinct decrease of Cu concentration in the liver of the 3.0 mg group. In contrast, Cu concentrations in the kidneys increased about three times in the .8 and 1.5 mg Cd groups, but Cu in the 3.0 mg group showed only 1.5 times increase. The changes of these metal concentrations were observed mainly in the cytosol. Non-MT-Cd in the kidneys was maximum in the 1.5 mg group, but the 3.0 mg group showed significant decrease. In parallel with this decrease of Cd, Cu and Zn in the kidneys showed similar decrease. When the kidneys are injured, Zn and Cu appear to leak from this organ.  相似文献   

10.
An experiment was conducted to invest effects of chronic cadmium poisoning on Zn, Cu, Fe, Ca, and metallothionein gene expression and protein synthesis in liver and kidney in rats. Forty rats, 6?weeks old, were randomly allocated into two groups. A group was given CdCl(2) (1?mg/KgCd(2+)) by intraperitoneal injection once a day. The other group was treated with normal saline in the same way. Liver and kidney were collected for analysis at the end of the third week. Results showed that Cd exposure increased Cd (P?相似文献   

11.
Samples of liver, renal cortex, and medulla were obtained from 55 forensic autopsies (0- to 95-yr-old Japanese). Metallothionein (MT) was determined by the Ag-hem or Cd-hem method. Zinc (Zn), copper (Cu), and cadmium (Cd) were determined by atomic absorption spectrophotometry. The mean levels of MT were 250 μg/g in the liver, and 394 μg/g (cortex) and 191 μg/g (medulla) in the kidney. Age-dependent changes were observed in both the liver and kidney. In the liver, MT level decreased during infancy and increased thereafter with age. Similar age-dependent changes in the levels of Zn and Cu were observed. In the kidney cortex, MT level increased with age, although no correlation was found after middle age. The levels of Cd and Zn also increased with age until middle age; however, they decreased thereafter. These results suggest that age-dependent changes in renal MT levels are associated with accumulation of Cd.  相似文献   

12.
This article is based on data on the levels of metals (Cd, Zn, Cu) and metallothionein (MT) determined radiochemically with203Hg in renal cortex and liver of 137 autopsy cases. From this number, for 23 cases, the gel filtration of the cytoplasmic fraction of the organs was performed. The molar content of metals in the MT fraction (Sephadex G-50) amounted to 46.9, 50.2, and 2.0% for Cd, Zn, and Cu in renal cortex, respectively, and to 8.3, 83.6, and 9.1% for Cd, Zn, and Cu in the liver, respectively. In parallel with the increase of Cd and MT in renal cortex, increasing saturation was found of the MT fraction by Cd, occurring at the expense of Zn and Cu. Equimolar amounts of Cd and Zn in the MT fraction are found at Cd level of 0.5 μmol Cd/g wet wt of renal cortex. In the liver, analogous dependency (elevation of %Zn, depression of %Cd and %Cu) were observed in relation to Zn and MT levels in this organ. The basic level of Zn (not bound with MT) was estimated at 0.5 μmol/g for both renal cortex and liver. A deficit of non-MT Zn in kidneys is proposed as an alternative mechanism of toxic Cd action.  相似文献   

13.
14.
Experiments were carried out to investigate the uptake and accumulation of Zn in rat hepatoma HTC cells, as affected by interfering metals (Cd, Cu), metallothionein synthesis inhibiting compounds (Actinomycin D, cycloheximide) and metallothionein synthesis stimulating compounds (dexamethasone, dibu-cAMP). Cell viability was tested under all experimental conditions by the measurement of LDH leakage, K+ uptake and total cell protein. Determinations of Zn were performed by AAS (total Zn) or by gamma-ray spectrometry (65Zn). Metallothionein analysis was carried out by Cd-saturation tests. The results indicate that cellular responses in rat hepatoma HTC cells with respect to the uptake and accumulation of 65Zn are fully comparable with literature data existing for 65Zn accumulation in rat hepatocytes, under all experimental conditions applied. Cu2+ and dibutyryl-cAMP did not significantly affect rates of 65Zn accumulation. Cd2+, Actinomycin D and cycloheximide reduced 65Zn uptake, but dexamethasone additions resulted in increased 65Zn accumulation in the cells. Effects on 65Zn were shown both in cytosolic and in the membranes/organelles cell fractions. HPLC chromatography in control cells suggested that newly accumulated cytosolic 65Zn was predominantly MT-associated. Dexamethasone-induced 65Zn accumulation could not be related to elevated cellular MT levels, nor were the total cytosolic Zn levels significantly affected. Non-specific attenuations in MT levels (Actinomycin D, cycloheximide and dibu-cAMP) yielded linear relations between cytosolic 65Zn and MT levels, without any change in cytosolic Zn (AAS). Combined addition of Cd and dexamethasone yielded elevated MT levels, but severely reduced total cytosolic Zn and 65Zn concentrations. The results further indicate the non-Zn-specific nature of dexamethasone-action and suggest the relatively easy Zn-complexing and Zn-release of MT. The simultaneous determinations of total cytosolic zinc and cytosolic 65Zn levels showed that the application and sole measurement of radiotracers may yield only one-sided views of what is actually present or occurring in the cells.  相似文献   

15.
We studied metallothionein (MT) response in the manure worm Eisenia fetida after exposures to cadmium (Cd), zinc (Zn) or cadmium and zinc spiked media. MT was studied both at the protein level by Dot Immunobinding Assay, (DIA) and at the expression level by Northern blotting. Cd was highly accumulated by worms whereas Zn body concentration was regulated. In addition, Zn would limit Cd accumulation in worms exposed to low Cd concentrations (1 and 8 mg Cd kg(-1) of dry soil). Exposure to a mixture of Cd and Zn at high concentrations increased cytosolic MT levels. This increase would allow worms to regulate body Zn concentrations and also to limit Cd toxicity. Cd exposures increased gene expression of Cd-binding MT isoform (MT 2A) whereas Zn did not. However, when both metals were at high concentrations in the exposure medium, this expression was further increased. Several hypotheses are proposed to explain the results and the best approach to estimate metal exposure of this earthworm species is given. Further experiments have now to be performed to evaluate the usefulness of these MT responses for field contaminated soils toxicity assessment using this earthworm species.  相似文献   

16.
Metal concentrations of the soluble fraction of the cytoplasm (cytosol) and the whole body were determined in the caddisfly Hydropsyche spp. (Trichoptera). Metal accumulation in the cytosol and the whole body were compared in samples collected along 380 kms of a contamination gradient in the Clark Fork river in four consecutive years (1992–1995), and from a contaminated tributary (Flint Creek). Samples from the contaminated sites were compared to an uncontaminated tributary (Blackfoot River). Relations between cytosolic metal concentration and cytosolic protein (used as a general biomarker of protein metabolism) also were examined in 1994 and 1995. Relative to whole body concentrations, cytosolic metal concentrations varied among metals and years. Spatial patterns in whole body and cytosolic Cd, Cu and Pb concentrations were qualitatively similar each year, and these concentrations generally corresponded to contamination levels measured in bed sediments. The proportions of metals recovered in the cytosol of ranged from 12 to 64% for Cd and Cu and from 2 to 38% for Pb. Zinc in the whole body also was consistent with contamination levels, but cytosolic Zn concentrations increased only at the highest whole body Zn concentrations. As a result, the proportion of Zn recovered in the cytosol ranged from 16 to 63% and tended to be inversely related to whole body Zn concentrations. The proportions of cytosolic metals varied significantly among years and, as a result, interannual differences in metal concentrations were greater in the cytosol than in the whole body. The results demonstrated that Hydropsyche in the river were chronically exposed to biologically available metals. Some features of this exposure were not evident from whole body concentrations. In general, protein levels did not correspond to cytosolic metal concentrations. A variety of environmental factors could interact with metal exposures to produce complex responses in protein metabolism. Systematic study will be necessary to differentiate the effects of multiple environmental stressors on organisms living in contaminated ecosystems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Intermoult male and female crabs Pachygrapsus marmoratus and Carcinus maenas were sampled from three sites between the mouth and 25 km upstream in the Gironde, the most Cd-contaminated estuary in France, in order to study the relative importance of natural factors (salinity, sex, weight) and accumulated metal concentrations on metallothionein (MT) concentrations. In the two species studied, higher metal, total protein and MT concentrations were observed in the hepatopancreas than in the gills. In P. marmoratus, MT concentrations were mainly related to changes in the natural factors even if MT and Zn concentrations were positively correlated in the hepatopancreas whereas in C. maenas, the main relationships were with accumulated metal levels. In the case of the natural factors, the most important ones were weight in gills of both crab species, and salinity changes in both hepatopancreas and gills of P. marmoratus. Cd and Cu concentrations in both organs of the two species were inversely related to salinity. The same observation was found for Zn concentrations in C. maenas but not in P. marmoratus. In the hepatopancreas of both species, the highest total protein concentrations were found in crabs from the site with the highest salinity, whereas there were no such differences in the gills. It seems that changes in MT concentrations are linked more to changes in general protein metabolism than to changes in metal accumulation. Thus it was important to examine the storage of metals in other tissue compartments, particularly the insoluble fraction which includes mineral granules which is known to also contribute to trace metal detoxification in invertebrates. In the gills of the crabs, Zn was present mainly in the insoluble fraction, whereas Cd was nearly equally distributed between soluble and insoluble fractions. In contrast, Cu in the gills and all three metals in the hepatopancreas of both species were mainly cytosolic, but this does not necessarily imply a predominant role for MT since the cytosolic fraction also includes other macromolecules which may be the target binding site for accumulated trace metals.  相似文献   

19.
The effect of oral zinc (Zn) treatment was studied in the liver, kidneys and intestine of Long-Evans Cinnamon (LEC) rats in relation to metals interaction and concentration of metallothionein (MT) and glutathione (GSH). We also investigated the change in the activity of antioxidant enzymes and determined the biochemical profile in the blood and metal levels in urine. We showed that the Zn-treated group had higher levels of MT in the hepatic and intestinal cells compared to both untreated and basal groups. Tissue Zn concentrations were significantly higher in the Zn-treated group compared to those untreated and basal, whereas Cu and Fe concentrations decreased. The antioxidant enzyme activities in the Zn-treated group did not change significantly with respect to those in the basal group, except for hepatic glutathione peroxidase activity. Moreover, the biochemical data in the blood of Zn-treated group clearly ascertain no liver damage. These observations suggest an important role for Zn in relation not only to its ability to compete with other metals at the level of absorption in the gastrointestinal tract producing a decrease in the hepatic and renal Cu and Fe deposits, but also to MT induction as free radical scavenger.  相似文献   

20.
1. A short-term exposure of adult Wistar rats to Cu (50 μg/ml) and Cd (10.0 μg/ml drinking water) caused significant changes in the subcellular concentrations of Cd, Cu, Zn and metallothionein (MT) in the liver and kidney; the concentrations were close to the physiological values, however.2. To establish a relationship between these changes in the subcellular concentrations of Cd, Cu, Zn and the level of MT in the post-mitochondrial fraction of the liver and kidney, the analytical data (N = 42) were subjected to the multiple regression analysis.3. The analysis showed that MT synthesis in the liver was principally induced by small amounts of Cd (0.32–1.4 μg/g wet wt) whereas in the kidney a level of MT in the post-mitochondrial fraction correlated positively with the renal Cd and Cu, as well as with the level of this protein in the liver.4. The above results together with the positive correlation between the level of MT in the post-mitochondrial fraction and the concentration of Cu in this fraction, as well as the fact that under normal physiological conditions the capacity of MT (β-domain) in the liver and kidney was sufficient to bind 50–100% of the total post-mitochondrial Cu suggest that MT, first induced by small amounts of Cd, may be involved in the metabolism of Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号