首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptors of the scavenger class B family were reported to be localized in caveolae, the cell surface microdomains rich in free cholesterol and glycosphyngolipids, which are characterized by the presence of caveolin-1. Parenchymal hepatic and hepatoma HepG2 cells express very low levels of caveolin-1. In the present study, stable transformants of HepG2 cells expressing caveolin-1 were generated to address the effect of caveolin-1 on receptor activity. Compared to normal cells, these cells show higher (125)I-bovine serum albumin (BSA) uptake and cholesterol efflux, two indicators of functional caveolae. By immunoprecipitation, cell fractionation and confocal analyses, we found that caveolin-1 is well colocalized with the cluster of differentiation-36 (CD36) and the low-density lipoprotein (LDL) receptor (LDLr) but to a lesser extent with the scavenger receptor class B type I (SR-BI) in HepG2 cells expressing caveolin-1. However, caveolin-1 expression favors the dimerization of SR-BI. Two clones of cells expressing caveolin-1 were investigated for their lipoprotein metabolism activity. Compared to normal cells, these cells show a 71-144% increase in (125)I-LDL degradation. The analysis of the cholesteryl esters (CE)-selective uptake (CE association minus protein association) revealed that the expression of caveolin-1 in HepG2 cells decreases by 59%-73% LDL-CE selective uptake and increases high-density lipoprotein (HDL)-CE selective uptake by 44%-66%. We conclude that the expression of caveolin-1 in HepG2 cells moves the balance of LDL degradation/CE selective uptake towards degradation and favors HDL-CE selective uptake. Thus, in the normal hepatic parenchymal situation where caveolin-1 is poorly expressed, LDL-CE selective uptake is the preferred pathway.  相似文献   

2.
Caveolae, plasma membrane invaginations particularly abundant in adipocytes, have been suggested to be important in organizing insulin signalling. Insulin-induced activation of the membrane bound cAMP degrading enzyme, phosphodiesterase 3B (PDE3B) is a key step in insulin-mediated inhibition of lipolysis and is also involved in the regulation of insulin-mediated glucose uptake and lipogenesis in adipocytes. The aim of this work was to evaluate whether PDE3B is associated with caveolae. Subcellular fractionation of primary rat and mouse adipocytes demonstrated the presence of PDE3B in endoplasmic reticulum and plasma membrane fractions. The plasma membrane PDE3B was further analyzed by detergent treatment at 4 degrees C, which did not solubilize PDE3B, indicating an association of PDE3B with lipid rafts. Detergent-treated plasma membranes were studied using Superose-6 chromatography which demonstrated co-elution of PDE3B with caveolae and lipid raft markers (caveolin-1, flotillin-1 and cholesterol) at a Mw of >4000 kDa. On sucrose density gradient centrifugation of sonicated plasma membranes, a method known to enrich caveolae, PDE3B co-migrated with the caveolae markers. Immunoprecipitation of caveolin-1 using anti caveolin-1 antibodies co-immunoprecipitated PDE3B and immunoprecipitation of flag-PDE3B from adipocytes infected with a flag-PDE3B adenovirus resulted in co-immunoprecipitation of caveolin-1. Studies on adipocytes with disrupted caveolae, using either caveolin-1 deficient mice or treatment of adipocytes with methyl-beta-cyclodextrin, reduced the membrane associated PDE3B activity. Furthermore, inhibition of PDE3 in primary rat adipocytes resulted in reduced insulin stimulated glucose transporter-4 translocation to caveolae, isolated by immunoprecipitation using caveolin-1 antibodies. Thus, PDE3B, a key enzyme in insulin signalling, appears to be associated with caveolae in adipocytes and this localization seems to be functionally important.  相似文献   

3.
4.
The class B, type I scavenger receptor (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. SR-BI is predominantly associated with caveolae in Chinese hamster ovary cells. The caveola protein, caveolin-1, binds to cholesterol and is involved in intracellular cholesterol trafficking. We previously demonstrated a correlative increase in caveolin-1 expression and the selective uptake of HDL cholesteryl esters in phorbol ester-induced differentiated THP-1 cells. The goal of the present study was to determine if the expression of caveolin-1 is the causative factor in increasing selective cholesteryl ester uptake in macrophages. To test this, we established RAW and J-774 cell lines that stably expressed caveolin-1. Transfection with caveolin-1 cDNA did not alter the amount of 125I-labeled HDL that associated with the cells, although selective uptake of HDL [3H]cholesteryl ether was decreased by approximately 50%. The amount of [3H]cholesterol effluxed to HDL was not affected by caveolin-1. To directly address whether caveolin-1 inhibits SR-BI-dependent selective cholesteryl ester uptake, we overexpressed caveolin-1 by adenoviral vector gene transfer in Chinese hamster ovary cells stably transfected with SR-BI. Caveolin-1 inhibited the selective uptake of HDL [3H]cholesteryl ether by 50-60% of control values without altering the extent of cell associated HDL. We next used blocking antibodies to CD36 and SR-BI to demonstrate that the increase in selective [3H]cholesteryl ether uptake previously seen in differentiated THP-1 cells was independent of SR-BI. Finally, we used beta-cyclodextrin and caveolin overexpression to demonstrate that caveolae depleted of cholesterol facilitate SR-BI-dependent selective cholesteryl ester uptake and caveolae containing excess cholesterol inhibit uptake. We conclude that caveolin-1 is a novel negative regulator of SR-BI-dependent selective cholesteryl ester uptake.  相似文献   

5.
6.

Purpose

Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.

Methods

Caveolae were isolated from Chinese hamster ovary (CHO) cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS). The caveolin-1bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.

Results

In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5×107 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.

Conclusion

Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.  相似文献   

7.
Caveolin-1 and CD36 are plasma membrane fatty acid binding proteins that participate in adipocyte fatty acid uptake and metabolism. Both are associated with cholesterol-enriched caveolae/lipid rafts in the plasma membrane that are important for long chain fatty acid uptake. Depletion of plasma membrane cholesterol reversibly inhibited oleate uptake by adipocytes without altering the amount or the cell surface distribution of either caveolin-1 or CD36. Cholesterol levels thus regulate fatty acid uptake by adipocytes via a pathway that does not involve altered cell surface localization of caveolin-1 or CD36.  相似文献   

8.
The liver is the major site of cholesterol synthesis and metabolism, and the only substantive route for eliminating blood cholesterol. Scavenger receptor class B, type I (SR-BI) has been reported to be responsible for mediating the selective uptake of high-density lipoprotein cholesteryl esters (HDL-CE) in liver parenchymal cells (PC). We analysed the expression of SR-BI in isolated rat liver cells, and found the receptor to be highly expressed in liver PC at both the mRNA and protein levels. We also found SR-BI to be expressed in liver endothelial cells (LEC) and Kupffer cells (KC). SR-BI has not previously been reported to be present in LEC. CD36 mRNA was expressed in all three liver cell types. Since caveolin-1 appears to colocalize with SR-BI and CD36 in caveolae of several cell lines, the distribution and expression of caveolin-1 in the liver cells were investigated. Caveolin-1 was not detected in PC but was found in both LEC and KC. This led to the suggestion that caveolin-1 may be more important in the efflux of cholesterol than in the selective uptake of cholesterol in the liver.  相似文献   

9.
Free cholesterol (FC) has been reported to efflux from cells through caveolae, which are 50-100 nm plasma membrane pits. The 22 kDa protein caveolin-1 is concentrated in caveolae and is required for their formation. The HDL scavenger receptor BI (SR-BI), which stimulates both FC efflux and selective uptake of HDL-derived cholesteryl ester (CE), has been reported to be concentrated in caveolae, suggesting that this localization facilitates flux of FC and CE across the membrane. However, we found that overexpression of caveolin-1 in Fischer rat thyroid (FRT) cells, which lack caveolin-1 and caveolae, or HEK 293 cells, which normally express very low levels of caveolin-1, did not affect FC efflux to HDL or liposomes. Transient expression of SR-B1 did not affect this result. Similarly, caveolin-1 expression did not affect selective uptake of CE from labeled HDL particles in FRT or HEK 293 cells transfected with SR-BI. We conclude that basal and SR-BI-stimulated FC efflux to HDL and liposomes and SR-BI-mediated selective uptake of HDL CE are not affected by caveolin-1 expression in HEK 293 or FRT cells.  相似文献   

10.
Yuan T  Hong S  Yao Y  Liao K 《Cell research》2007,17(9):772-782
Caveolae and non-caveolar lipid rafts are two types of membrane lipid microdomains that play important roles in insulin-stimulated glucose uptake in adipocytes. In order to ascertain their specific functions in this process, caveolae were ablated by caveolin-1 RNA interference. In Cav-1 RNAi adipocytes, neither insulin-stimulated glucose uptake nor Glut-4 (glucose transporter 4) translocation to membrane lipid microdomains was affected by the ablation of caveolae. With a modified sucrose density gradient, caveolae and non-caveolar lipid rafts could be separated. In the wild-type 3T3- L l adipocytes, Glut-4 was found to be translocated into both caveolae and non-caveolar lipid rafts. However, in Cav1 RNAi adipocytes, Glut-4 was localized predominantly in non-caveolar lipid rafts. After the removal of insulin, caveolaelocalized Glut-4 was internalized faster than non-caveolar lipid raft-associated Glut-4. The internalization of Glut-4 from plasma membrane was significantly decreased in Cav-1 RNAi adipocytes. These results suggest that insulin-stimulated Glut-4 translocation and glucose uptake are caveolae-independent events. Caveolae play a role in the internalization of Glut-4 from plasma membrane after the removal of insulin.  相似文献   

11.
Class B type I scavenger receptor (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL)-derived cholesteryl esters (HDL-CE) in steroidogenic cells and hepatocytes. SR-BI is enriched in the caveolae of some cell types, genetically modified or not, and these domains have already been shown to constitute primary acceptors for HDL-CE. Nevertheless, the fate of caveola-free cell types has not yet been discussed.NCI-H295R, a human adrenal cell line, highly active in HDL-CE uptake via SR-BI, does not display any morphologically defined caveolae and expresses caveolin at a very low level. Using two different fractionation protocols, we have shown, in this cell type, that SR-BI is homogeneously distributed along the plasma membrane and consists principally of a non-raft membrane-associated pool. Raft destabilisation and caveolin-1 displacement from plasma membrane did not modify the SR-BI-mediated HDL-CE selective uptake. Moreover, the induction of SR-BI expression that is associated with increased CE selective uptake was not associated with any modification in caveolin-1 expression or any raft-targeting mechanism of SR-BI in NCI-H295R.In conclusion, we provide evidence that SR-BI does not require raft/caveola localisation to be implicated in CE selective uptake either in basal or in induced conditions.  相似文献   

12.
Recent studies on the role of caveolin-1 in adipocytes showed that caveolin has emerged as an important regulatory element in insulin signaling but little is known on its role in skeletal muscle cells. In this study, we demonstrate for the first time that caveolin-1 plays a crucial role in insulin dependent glucose uptake in skeletal muscle cells. Differentiation of L6 skeletal muscle cells induce the expression of caveolin-1 and caveolin-3 with partial colocalization. However in contrast to adipocytes, phosphorylation of insulin receptor beta (IRbeta) and Akt/Erk was not affected by the respective downregulation of caveolin-1 or caveolin-3 in the muscle cells. Moreover, the phosphorylation of IRbeta was detected not only in the caveolae but also in the non-caveolae fractions of the muscle cells despite the interaction of IRbeta with caveolin-1 and caveolin-3. These data implicate the lack of relationship between caveolins and IRbeta pathway in the muscle cells, different from the adipocytes. However, glucose uptake was reduced specifically by downregulation of caveolin-1, but not that of caveolin-3. Taken together, these observations suggest that caveolin-1 plays a crucial role in glucose uptake in differentiated muscle cells and that the regulation of caveolin-1 expression may be an important mechanism for insulin sensitivity, implying the role of muscle cells for type 2 diabetes.  相似文献   

13.
Long-chain fatty acid uptake into adipocytes depends on lipid raft function   总被引:7,自引:0,他引:7  
This study investigates the role of lipid rafts and caveolae, a subclass of lipid raft microdomains, in the binding and uptake of long-chain fatty acids (LCFA) by 3T3-L1 cells during differentiation. Disruption of lipid rafts by beta-cyclodextrin (betaCD) or selective inhibition of caveolae by overexpression of a dominant-negative mutant of caveolin-3 (Cav(DGV)) resulted in disassembly of caveolae structures at the cell surface, as assessed by electron microscopy. While in 3T3-L1 fibroblasts, which express few caveolae, Cav(DGV) or betaCD had no effect on LCFA uptake, in 3T3-L1 adipocytes the same treatments decreased the level of [(3)H]oleic acid uptake by up to 55 +/- 8 and 49 +/- 7%, respectively. In contrast, cholesterol loading of 3T3-L1 adipocytes resulted in a 4-fold increase in the extent of caveolin-1 expression and a 1.7-fold increase in the level of LCFA uptake. Both the inhibitory and enhancing effects of these treatments were constantly increasing with the [(3)H]oleic acid incubation time up to 5 min. Incubation of 3T3-L1 adipocytes with [(3)H]stearate followed by isolation of a caveolin-1 positive detergent-resistant membrane (DRM) fraction revealed that [(3)H]stearate binds to caveolae. Fatty acid translocase (FAT/CD36) was found to be present in this DRM fraction as well. Our data thus strongly indicate a critical involvement of lipid rafts in the binding and uptake of LCFA into 3T3-L1 adipocytes. Furthermore, our findings suggest that caveolae play a pivotal role in lipid raft-dependent LCFA uptake. This transport mechanism is induced in conjunction with cell differentiation and might be mediated by FAT/CD36.  相似文献   

14.
HDL-mediated reverse-cholesterol transport as well as phosphoinositide signaling are mediated through plasma membrane microdomains termed caveolae/lipid rafts. However, relatively little is known regarding mechanism(s) whereby these lipids traffic to or are targeted to caveolae/lipid rafts. Since sterol carrier protein-2 (SCP-2) binds both cholesterol and phosphatidylinositol, the possibility that SCP-2 might interact with caveolin-1 and caveolae was examined. Double immunolabeling and laser scanning fluorescence microscopy showed that a small but significant portion of SCP-2 colocalized with caveolin-1 primarily at the plasma membrane of L-cells and more so within intracellular punctuate structures in hepatoma cells. In SCP-2 overexpressing L-cells, SCP-2 was detected in close proximity to caveolin, 48 +/- 4 A, as determined by fluorescence resonance energy transfer (FRET) and immunogold electron microscopy. Cell fractionation of SCP-2 overexpressing L-cells and Western blotting detected SCP-2 in purified plasma membranes, especially in caveolae/ lipid rafts as compared to the nonraft fraction. SCP-2 and caveolin-1 were coimmunoprecipitated from cell lysates by anti-caveolin-1 and anti-SCP-2. Finally, a yeast two-hybrid assay demonstrated that SCP-2 directly interacts with caveolin-1 in vivo. These interactions of SCP-2 with caveolin-1 were specific since a functionally related protein, phosphatidyinositol transfer protein (PITP), colocalized much less well with caveolin-1, was not in close proximity to caveolin-1 (i.e., >120 A), and was not coimmunoprecipitated by anti-caveolin-1 from cell lysates. In summary, it was shown for the first time that SCP-2 (but not PITP) selectively interacted with caveolin-1, both within the cytoplasm and at the plasma membrane. These data contribute significantly to our understanding of the role of SCP-2 in cholesterol and phosphatidylinositol targeted from intracellular sites of synthesis in the endoplasmic reticulum to caveolae/lipid rafts at the cell surface plasma membrane.  相似文献   

15.
Scavenger receptor (SR)-BI mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. In Chinese hamster ovary (CHO) cells, SR-BI is predominantly associated with caveolae which we have recently demonstrated are the initial loci for membrane transfer of HDL cholesteryl esters. Because cholesterol accumulation in macrophages is a critical event in atherogenesis, we investigated the expression of SR-BI and caveolin-1 in several macrophage cell lines. Human THP-1 monocytes were examined before and after differentiation to macrophages by treatment with 200 nm phorbol ester for 72 h. Undifferentiated THP-1 cells expressed caveolin-1 weakly whereas differentiation up-regulated caveolin-1 expression greater than 50-fold. In contrast, both undifferentiated and differentiated THP-1 cells expressed similar levels of SR-BI. Differentiation of THP-1 cells increased the percent of membrane cholesterol associated with caveolae from 12% +/- 1.9% to 38% +/- 3.1%. The increase in caveolin-1 expression was associated with a 2- to 3-fold increase in selective cholesterol ether uptake from HDL. Two mouse macrophage cell lines, J774 and RAW, expressed levels of SR-BI similar to differentiated THP-1 cells but did not express detectable levels of caveolin-1. In comparison to differentiated THP-1 cells, RAW and J774 cells internalized 9- to 10-fold less cholesteryl ester. We conclude that differentiated THP-1 cells express both caveolin-1 and SR-BI and that their co-expression is associated with enhanced selective cholesteryl ester uptake.  相似文献   

16.
Caveolae organelles and caveolin-1 protein expression are most abundant in adipocytes and endothelial cells. Our initial report on mice lacking caveolin-1 (Cav-1) demonstrated a loss of caveolae and perturbations in endothelial cell function. More recently, however, observation of the Cav-1-deficient cohorts into old age revealed significantly lower body weights, as compared with wild-type controls. These results suggest that Cav-1 null mice may have problems with lipid metabolism and/or adipocyte functioning. To test this hypothesis directly, we placed a cohort of wild-type and Cav-1 null mice on a high fat diet. Interestingly, despite being hyperphagic, Cav-1 null mice show overt resistance to diet-induced obesity. As predicted, adipocytes from Cav-1 null null mice lack caveolae membranes. Early on, a lack of caveolin-1 selectively affects only the female mammary gland fat pad and results in a near complete ablation of the hypo-dermal fat layer. There are also indications of generalized adipose tissue pathology. With increasing age, a systemic decompensation in lipid accumulation occurs resulting in dramatically smaller fat pads, histologically reduced adipocyte cell diameter, and a poorly differentiated/hypercellular white adipose parenchyma. To gain mechanistic insights into this phenotype, we show that, although serum insulin, glucose, and cholesterol levels are entirely normal, Cav-1 null mice have severely elevated triglyceride and free fatty acid levels, especially in the post-prandial state. However, this build-up of triglyceride-rich chylomicrons/very low density lipoproteins is not due to perturbed lipoprotein lipase activity, a major culprit of isolated hypertriglyceridemia. The lean body phenotype and metabolic defects observed in Cav-1 null mice are consistent with the previously proposed functions of caveolin-1 and caveolae in adipocytes. Our results show for the first time a clear role for caveolins in systemic lipid homeostasis in vivo and place caveolin-1/caveolae as major factors in hyperlipidemias and obesity.  相似文献   

17.
Caveolae are 50- to 100-nm cell surface plasma membrane invaginations present in terminally differentiated cells. They are characterized by the presence of caveolin-1, sphingolipids, and cholesterol. Caveolin-1 is thought to play an important role in the regulation of cellular cholesterol homeostasis, a process that needs to be properly controlled to limit and prevent cholesterol accumulation and eventually atherosclerosis. We have recently generated caveolin-1-deficient [Cav-1(-/-)] mice in which caveolae organelles are completely eliminated from all cell types, except cardiac and skeletal muscle. In the present study, we examined the metabolism of cholesterol in wild-type (WT) and Cav-1(-/-) mouse embryonic fibroblasts (MEFs) and mouse peritoneal macrophages (MPMs). We observed that Cav-1(-/-) MEFs are enriched in esterified cholesterol but depleted of free cholesterol compared with their wild-type counterparts. Similarly, Cav-1(-/-) MPMs also contained less free cholesterol and were enriched in esterified cholesterol on cholesterol loading. In agreement with this finding, caveolin-1 deficiency was associated with reduced free cholesterol synthesis but increased acyl-CoA:cholesterol acyl-transferase (ACAT) activity. In wild-type MPMs, we observed that caveolin-1 was markedly upregulated on cholesterol loading. Despite these differences, cellular cholesterol efflux from MEFs and MPMs to HDL was not affected in the Cav-1-deficient cells. Neither ATP-binding cassette transporter G1 (ABCG1)- nor scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux was affected. Cellular cholesterol efflux to apolipoprotein A-I was not significantly reduced in Cav-1(-/-) MPMs compared with wild-type MPMs. However, ABCA1-mediated cholesterol efflux was clearly more sensitive to the inhibitory effects of glyburide in Cav-1(-/-) MPMs versus WT MPMs. Taken together, these findings suggest that caveolin-1 plays an important role in the regulation of intracellular cholesterol homeostasis and can modulate the activity of other proteins that are involved in the regulation of intracellular cholesterol homeostasis.  相似文献   

18.
The association of the low-density lipoprotein (LDL) receptor with detergent resistant hepatic membranes was investigated using discontinuous sucrose gradients. In liver homogenates from both hamsters and rats, the fractions with the highest concentrations of LDL receptor coincided with the location of caveolin-1, a marker of the cholesterol-rich caveolae. Feeding the animals diets enriched in cholesterol slightly shifted both LDL receptor and caveolin-1 to positions of lower density. The cholesterol content of the caveolae fractions was increased 2-fold in animals fed cholesterol-supplemented diets. In homogenates of CHO cells, fractionated in the same manner, the LDL receptor was absent from the caveolae fractions but was present in denser fractions near the bottom of the gradient. Addition of caveolin-1 antibody to solubilized caveolae from liver coimmunoprecipitated the LDL receptor. These observations suggest that in liver, the LDL receptor is mainly located in caveolae. This location contrasts with the clathrin-coated pit location observed in fibroblasts and CHO cells.  相似文献   

19.
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We previously showed that RhoA activation by high glucose in mesangial cells (MC) leads to matrix upregulation (Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC. Diabetes 57: 1683-1692, 2008). Here, we study the mechanism whereby RhoA is activated. In primary rat MC, RhoA activation required glucose entry and metabolism. Broad PKC inhibitors (PMA, bisindolylmaleimide, G?6976), as well as specific PKCβ blockade with an inhibitor and small interfering RNA (siRNA), prevented RhoA activation by glucose. PKCβ inhibition also abrogated reactive oxygen species (ROS) generation by glucose. The ROS scavenger N-acetylcysteine (NAC) or NADPH oxidase inhibitors apocynin and DPI prevented glucose-induced RhoA activation. RhoA and some PKC isoforms localize to caveolae. Chemical disruption of these microdomains prevented RhoA and PKCβ1 activation by glucose. In caveolin-1 knockout cells, glucose did not induce RhoA and PKCβ1 activation; these responses were rescued by caveolin-1 reexpression. Furthermore, glucose-induced ROS generation was significantly attenuated by chemical disruption of caveolae and in knockout cells. Downstream of RhoA signaling, activator protein-1 (AP-1) activation was also inhibited by disrupting caveolae, was absent in caveolin-1 knockout MC and rescued by caveolin-1 reexpression. Finally, transforming growth factor (TGF)-β1 upregulation, mediated by AP-1, was prevented by RhoA signaling inhibition and by disruption or absence of caveolae. In conclusion, RhoA activation by glucose is dependent on PKCβ1-induced ROS generation, most likely through NADPH oxidase. The activation of PKCβ1 and its downstream effects, including upregulation of TGF-β1, requires caveolae. These microdomains are thus important mediators of the profibrogenic process associated with diabetic nephropathy.  相似文献   

20.
Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1-32 amphipathic alpha helix of SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1 scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through a new domain identified in the N-terminal domain of caveolin-1 between aa 34-40. Modeling studies suggested that electrostatic interactions between the SCP-2 N-terminal aa 1-32 amphipathic alpha-helical domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33-59 alpha helix (anionic, negatively charged face) may significantly contribute to this interaction. These findings provide new insights on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号