首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have made a comprehensive and quantitative analysis of the lipid composition of caveolae from primary rat fat cells and compared the composition of plasma membrane inside and outside caveolae. We isolated caveolae from purified plasma membranes using ultrasonication in carbonate buffer to disrupt the membrane, or extraction with nonionic detergent, followed by density gradient ultracentrifugation. The carbonate-isolated caveolae fraction was further immunopurified using caveolin antibodies. Carbonate-isolated caveolae were enriched in cholesterol and sphingomyelin, and the concentration was three- and twofold higher, respectively, in caveolae compared to the surrounding plasma membrane. The concentration of glycerophospholipids was similar suggesting that glycerophospholipids constitute a constant core throughout the plasma membrane. The composition of detergent-insoluble fractions of the plasma membrane was very variable between preparations, but strongly enriched in sphingomyelin and depleted of glycerophospholipids compared to carbonate-isolated caveolae; indicating that detergent extraction is not a suitable technique for caveolae preparation. An average adipocyte caveola contained about 22 x 10(3) molecules of cholesterol, 7.5 x 10(3) of sphingomyelin and 23 x 10(3) of glycerophospholipid. The glycosphingolipid GD3 was highly enriched in caveolae, whereas GM3, GM1 and GD1a were present inside as well as outside the caveolae membrane. GD1b, GT1b, GM2, GQ1b, sulfatide and lactosylceramide sulfate were not detected in caveolae.  相似文献   

2.
A principal metabolic function of adipocytes is to synthesize triacylglycerol (TG) from exogenous fatty acids. The level of fatty acids has to be tightly controlled in the adipocyte, as they can act as detergents that rapidly dissolve the plasma membrane, causing cell lysis if allowed to accumulate. Fatty acids therefore have to be efficiently converted to TG and stored in the central lipid droplet. We report that in intact primary adipocytes exogenous oleic acid was taken up and directly converted to TG in the plasma membrane, in a novel subclass of caveolae that specifically contains the protein perilipin. Isolated caveolae catalyzed de novo TG synthesis from oleic acid and glycerol 3-phosphate. Electron microscopy revealed the presence of caveolin and perilipin in caveolae and in lipid-laden bulbs in the plasma membrane, and fluorescence microscopy demonstrated colocalization of fatty acids/TG with caveolin and perilipin at the plasma membrane. A second caveolae fraction was isolated, which lacked perilipin and the triacylglycerol synthesizing enzymes. Both caveolae fractions contained caveolin-1 and the insulin receptor. The findings demonstrate that specific subclasses of caveolae carry out specific functions in cell metabolism. In particular, triacylglycerol is synthesized at the site of fatty acid entry in one of these caveolae classes.  相似文献   

3.
4.
The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized. The first one, represented by a network-like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300-nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H(+)-symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).  相似文献   

5.
Calcium pump of the plasma membrane is localized in caveolae   总被引:22,自引:14,他引:22       下载免费PDF全文
《The Journal of cell biology》1993,120(5):1147-1157
The Ca2+ pump in the plasma membrane plays a key role in the fine control of the cytoplasmic free Ca2+ concentration. In the present study, its subcellular localization was examined with immunocytochemical techniques using a specific antibody generated against the erythrocyte membrane Ca2+ pump ATPase. By immunofluorescence microscopy of cultured cells, the labeling with the antibody was seen as numerous small dots, often distributed in linear arrays or along cell edges. Immunogold EM of cryosections revealed that the dots correspond to caveolae, or smooth invaginations of the plasma membrane. The same technique applied to mouse tissues in vivo showed that the Ca2+ pump is similarly localized in caveolae of endothelial cells, smooth muscle cells, cardiac muscle cells, epidermal keratinocytes and mesothelial cells. By quantitative analysis of the immunogold labeling, the Ca2+ pump in capillary endothelial cells and visceral smooth muscle cells was found to be concentrated 18-25-fold in the caveolar membrane compared with the noncaveolar portion of the plasma membrane. In renal tubular and small intestinal epithelial cells, which have been known to contain the Ca2+ pump but do not have many caveolae, most of the labeling was randomly distributed in the basolateral plasma membrane, although caveolae were also positively labeled. The results demonstrate that the caveolae in various cells has the plasmalemmal Ca2+ pump as a common constituent. In conjunction with our recent finding that an inositol 1,4,5-trisphosphate receptor-like protein exists in the caveolae (Fujimoto, T., S. Nakade, A. Miyawaki, K. Mikoshiba, and K. Ogawa. 1992. J. Cell Biol. 119:1507-1513), it is inferred that the smooth plasmalemmal invagination is an apparatus specialized for Ca2+ intake and extrusion from the cytoplasm.  相似文献   

6.
Methods used for the isolation, separation and characterization of boar seminal plasma proteins are discussed, as well as techniques applied to study their binding properties. Attention is paid to interactions of these proteins with different types of saccharides and glycoconjugates, with membrane phospholipids, and to interactions between proteins. Boar seminal plasma contains different types of proteins: spermadhesins of the AQN and AWN families; DQH and PSP proteins belong to the most abundant. Some of these proteins are bound to the sperm surface during ejaculation and thus protein-coating layers of sperm are formed. Sperms coated with proteins participate in different types of interactions occurring in the course of the reproduction process, e.g. formation of the oviductal sperm reservoir, sperm capacitation, oocyte recognition and sperm binding to the oocyte.  相似文献   

7.
A high resolution, two-dimensional (2-D) electrophoretic map of the plasma membrane (PM) polypeptides from the ejaculated boar spermatozoon is described. 2-D silver-stained polyacrylamide gel electrophoresis (PAGE) gels revealed over 250 polypeptides; Coomassie blue staining revealed more than 100. Fifty Coomassie-staining polypeptides were catalogued and biochemically characterized, with twenty of these designated major sperm PM polypeptides. Cavitation pressures ranging from 50 PSI to 1000 PSI were used to enrich 2-D maps either in head PM (50 PSI) or in flagellar PM (1000 PSI) and provided tentative localization of certain PM polypeptides. Immunoabsorption chromatography showed that most major polypeptides seen in the 2-D map were antigenic. Major polypeptide bands from single dimensional (1-D) gels were excised, antibodies against them were produced in rabbits, and the polypeptides were localized via indirect fluorescein isothiocyanate (FITC) technique. Cross-reacting antigenic determinants in the PAGE PM polypeptides were determined by transblotting and staining the transblots by an indirect peroxidase technique. Cross-reactivity was extensive with several polypeptide groups, but specific enough with others to allow tentative localization. Lectin affinity chromatography using Con A, WGA, RCA-1, PNA, and DBA indicated the lectin specificity of PM polypeptides. These data together with periodic acid-Schiff (PAS) and carbohydrate-specific silver staining permitted identification of glycoproteins in the 2-D maps. FITC coupled to specific lectins showed the regional distribution of these lectins on the sperm surface. The 2-D polypeptide map and the catalogue of properties of major Coomassie-stained PM polypeptides provides a reference for future studies in the boar and other species.  相似文献   

8.
Caveolae, plasma membrane invaginations particularly abundant in adipocytes, have been suggested to be important in organizing insulin signalling. Insulin-induced activation of the membrane bound cAMP degrading enzyme, phosphodiesterase 3B (PDE3B) is a key step in insulin-mediated inhibition of lipolysis and is also involved in the regulation of insulin-mediated glucose uptake and lipogenesis in adipocytes. The aim of this work was to evaluate whether PDE3B is associated with caveolae. Subcellular fractionation of primary rat and mouse adipocytes demonstrated the presence of PDE3B in endoplasmic reticulum and plasma membrane fractions. The plasma membrane PDE3B was further analyzed by detergent treatment at 4 degrees C, which did not solubilize PDE3B, indicating an association of PDE3B with lipid rafts. Detergent-treated plasma membranes were studied using Superose-6 chromatography which demonstrated co-elution of PDE3B with caveolae and lipid raft markers (caveolin-1, flotillin-1 and cholesterol) at a Mw of >4000 kDa. On sucrose density gradient centrifugation of sonicated plasma membranes, a method known to enrich caveolae, PDE3B co-migrated with the caveolae markers. Immunoprecipitation of caveolin-1 using anti caveolin-1 antibodies co-immunoprecipitated PDE3B and immunoprecipitation of flag-PDE3B from adipocytes infected with a flag-PDE3B adenovirus resulted in co-immunoprecipitation of caveolin-1. Studies on adipocytes with disrupted caveolae, using either caveolin-1 deficient mice or treatment of adipocytes with methyl-beta-cyclodextrin, reduced the membrane associated PDE3B activity. Furthermore, inhibition of PDE3 in primary rat adipocytes resulted in reduced insulin stimulated glucose transporter-4 translocation to caveolae, isolated by immunoprecipitation using caveolin-1 antibodies. Thus, PDE3B, a key enzyme in insulin signalling, appears to be associated with caveolae in adipocytes and this localization seems to be functionally important.  相似文献   

9.
10.
Insulin stimulates glucose uptake into adipocytes by mobilizing intracellular membrane vesicles containing GLUT4 proteins to the plasma membrane. Here we applied time-lapse total internal reflection fluorescence microscopy to study moving parameters and characters of exogenously expressed GLUT4 vesicles in basal, insulin and nocodazole treated primary rat adipocytes. Our results showed that microtubules were essential for long-range transport of GLUT4 vesicles but not obligatory for GLUT4 distribution in rat adipocytes. Insulin reduced the mobility of the vesicles, made them tethered/docked to the PM and finally had constitutive exocytosis. Moreover, long-range bi-directional movements of GLUT4 vesicles were visualized for the first time by TIRFM. It is likely that there are interactions between insulin signaling and microtubules, to regulating GLUT4 translocation in rat adipocytes.  相似文献   

11.
Caveolae are noncoated invaginations of the plasma membrane that form in the presence of the protein caveolin. Caveolae are found in most cells, but are especially abundant in adipocytes. By high-resolution electron microscopy of plasma membrane sheets the detailed structure of individual caveolae of primary rat adipocytes was examined. Caveolin-1 and -2 binding was restricted to the membrane proximal region, such as the ducts or necks attaching the caveolar bulb to the membrane. This was confirmed by transfection with myc-tagged caveolin-1 and -2. Essentially the same results were obtained with human fibroblasts. Hence caveolin does not form the caveolar bulb in these cells, but rather the neck and may thus act to retain the caveolar constituents, indicating how caveolin participates in the formation of caveolae. Caveolae, randomly distributed over the plasma membrane, were very heterogeneous, varying in size between 25 and 150 nm. There was about one million caveolae in an adipocyte, which increased the surface area of the plasma membrane by 50%. Half of the caveolae, those larger than 50 nm, had access to the outside of the cell via ducts and 20-nm orifices at the cell surface. The rest of the caveolae, those smaller than 50 nm, were not open to the cell exterior. Cholesterol depletion destroyed both caveolae and the cell surface orifices.  相似文献   

12.
Large scale characterization of plant plasma membrane proteins.   总被引:4,自引:0,他引:4  
After a brief review of the strategies used to date to identify systematically plasma membrane (PM) proteins, emphasis was given to the proteomic approach of PM proteins from the model plant Arabidopsis thaliana. Comparative analysis of two-dimensional gels from PM and cytosolic fractions was used to assess the cellular origin of proteins found in PM fraction. The classification obtained was confirmed by protein sequencing that showed, in addition, that most analyzed proteins were peripheral proteins. A large proportion of these appeared to correspond to PM-constitutive proteins that were present in the PM from different plant organs, but were not uniquely located at the PM depending on the organ. In addition, the presence of organ-specific sets of PM-specific proteins was also demonstrated. Additional procedures were developed to identify integral PM proteins. The combined use of PM washes with alkaline carbonate buffer or Triton X-100/KBr, and of a new detergent to solubilize protein, resulted in improved recovery of hydrophobic proteins on gels. Results are discussed in terms of construction of comprehensive proteomes for PM and other membranes and organelles.  相似文献   

13.
In adipocytes, perilipin coats and protects the central lipid droplet, which stores triacylglycerol. Alternative mRNA splicing gives rise to perilipin A and B. Hormones such as catecholamines and insulin regulate triacylglycerol metabolism through reversible serine phosphorylation of perilipin A. It was recently shown that perilipin was also located in triacylglycerol-synthesizing caveolae of the plasma membrane. We now report that perilipin at the plasma membrane of primary human adipocytes was phosphorylated on a cluster of threonine residues (299, 301, and 306) within an acidic domain that forms part of the lipid targeting domain. Perilipin B comprised <10% of total perilipin but was the major isoform associated with the plasma membrane of human adipocytes. This association was controlled by insulin and catecholamine: perilipin B was specifically depleted from the plasma membrane in response to the catecholamine isoproterenol, while insulin increased the amount of threonine phosphorylated perilipin at the plasma membrane. The reversible translocation of perilipin B to and from the plasma membrane in response to insulin and isoproterenol, respectively, suggests a specific function for perilipin B to protect newly synthesized triacylglycerol in the plasma membrane.  相似文献   

14.
Localization of the insulin receptor in caveolae of adipocyte plasma membrane.   总被引:15,自引:0,他引:15  
The insulin receptor is a transmembrane protein of the plasma membrane, where it recognizes extracellular insulin and transmits signals into the cellular signaling network. We report that insulin receptors are localized and signal in caveolae microdomains of adipocyte plasma membrane. Immunogold electron microscopy and immunofluorescence microscopy show that insulin receptors are restricted to caveolae and are colocalized with caveolin over the plasma membrane. Insulin receptor was enriched in a caveolae-enriched fraction of plasma membrane. By extraction with beta-cyclodextrin or destruction with cholesterol oxidase, cholesterol reduction attenuated insulin receptor signaling to protein phosphorylation or glucose transport. Insulin signaling was regained by spontaneous recovery or by exogenous replenishment of cholesterol. beta-Cyclodextrin treatment caused a nearly complete annihilation of caveolae invaginations as examined by electron microscopy. This suggests that the receptor is dependent on the caveolae environment for signaling. Insulin stimulation of cells prior to isolation of caveolae or insulin stimulation of the isolated caveolae fraction increased tyrosine phosphorylation of the insulin receptor in caveolae, demonstrating that insulin receptors in caveolae are functional. Our results indicate that insulin receptors are localized to caveolae in the plasma membrane of adipocytes, are signaling in caveolae, and are dependent on caveolae for signaling.  相似文献   

15.
Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (approximately 5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane.  相似文献   

16.
The LDL receptor (LDL-R) promotes the specific endocytosis and lysosomal delivery of extracellular lipoprotein ligands via clathrin-coated pits. It was widely assumed that other closely related members of the LDL-R gene family would have similar functions, but recent experimental evidence has revealed that one such protein, apolipoprotein E receptor 2 (apoER2), has a critical role as an "outside-in" signal transducer in the brain. ApoER2 signaling appears to require interaction between its cytoplasmic domain and adapter molecules such as Dab1, JIP 1 and JIP 2, and PSD-95. Many of the receptors for other signaling pathways affected by such adapter molecules are compartmentalized into specialized microdomains within the plasma membrane termed caveolae. Here, we show that apoER2, but not LDL-R, is localized to caveolae, supporting the concept that its physiological role is in cell signaling, rather than in endocytosing ligands.  相似文献   

17.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

18.
Chen P  Li X  Sun Y  Liu Z  Cao R  He Q  Wang M  Xiong J  Xie J  Wang X  Liang S 《Journal of neurochemistry》2006,98(4):1126-1140
The hippocampus is a distinct brain structure that is crucial in memory storage and retrieval. To identify comprehensively proteins of hippocampal plasma membrane (PM) and detect the neuronal-specific PM proteins, we performed a proteomic analysis of rat hippocampus PM using the following three technical strategies. First, proteins of the PM were purified by differential and density-gradient centrifugation from hippocampal tissue and separated by one-dimensional electophoresis, digested with trypsin and analyzed by electrospray ionization (ESI) quadrupole time-of-flight (Q-TOF) tandem mass spectrometry (MS/MS). Second, the tryptic peptide mixture from PMs purified from hippocampal tissue using the centrifugation method was analyzed by liquid chromatography ion-trap ESI-MS/MS. Finally, the PM proteins from primary hippocampal neurons purified by a biotin-directed affinity technique were separated by one-dimensional electrophoresis, digested with trypsin and analyzed by ESI-Q-TOF-MS/MS. A total of 345, 452 and 336 non-redundant proteins were identified by each technical procedure respectively. There was a total of 867 non-redundant protein entries, of which 64.9% are integral membrane or membrane-associated proteins. One hundred and eighty-one proteins were detected only in the primary neurons and could be regarded as neuronal PM marker candidates. We also found some hypothetical proteins with no functional annotations that were first found in the hippocampal PM. This work will pave the way for further elucidation of the mechanisms of hippocampal function.  相似文献   

19.
Cholesterol and glycosphingolipid-rich membrane rafts, which are rich in GPI-anchored proteins and are distinct from caveolae, are believed to serve as platforms for signal transduction events and protein recycling. GPI-anchored proteins with diverse functions as well as caveolin may be recovered in a membrane fraction insoluble in cold non-ionic detergent. This study tests for possible heterogeneity in the protein composition of the lipid rafts and detergent-insoluble membrane complexes by examining the two GPI-anchored homologous human folate receptors (FR)-alpha and -beta, the GPI-anchored human placental alkaline phosphatase (PLAP), and caveolin (control) in transfected CHO cells. Both FR and PLAP showed the equal distribution of cell-surface vs. sequestered (recycling) protein typical of GPI-proteins. Quantitative affinity purification of detergent-insoluble complexes using biotinylated folate or specific antibodies demonstrated a strong association of the homologous FR-alpha and FR-beta in the same detergent-insoluble complex and separate complexes containing either PLAP or caveolin. Immunogold localization experiments using antibody crosslinking to produce larger aggregates of GPI-anchored proteins for visualization by electron microscopy also showed a clear separation between FR- and PLAP-rich membrane microdomains. Thus, even though functionally diverse and heterologous GPI-anchored proteins are known to share endocytic and recycling vesicles, they may be segregated in distinct lipid rafts on the basis of their ecto(protein) domains facilitating clustering, compartmentalization and homotypic protein interactions.  相似文献   

20.
In this paper, we have analyzed the behavior of antibody cross-linked raft-associated proteins on the surface of MDCK cells. We observed that cross-linking of membrane proteins gave different results depending on whether cross-linking occurred on the apical or basolateral plasma membrane. Whereas antibody cross-linking induced the formation of large clusters on the basolateral membrane, resembling those observed on the surface of fibroblasts (Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. J. Cell Biol. 929-942), only small ( approximately 100 nm) clusters formed on the apical plasma membrane. Cross-linked apical raft proteins e.g., GPI-anchored placental alkaline phosphatase (PLAP), influenza hemagglutinin, and gp114 coclustered and were internalized slowly ( approximately 10% after 60 min). Endocytosis occurred through surface invaginations that corresponded in size to caveolae and were labeled with caveolin-1 antibodies. Upon cholesterol depletion the internalization of PLAP was completely inhibited. In contrast, when a non-raft protein, the mutant LDL receptor LDLR-CT22, was cross-linked, it was excluded from the clusters of raft proteins and was rapidly internalized via clathrin-coated pits.Since caveolae are normally present on the basolateral membrane but lacking from the apical side, our data demonstrate that antibody cross-linking induced the formation of caveolae, which slowly internalized cross-linked clusters of raft-associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号