首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that a high circulating free fatty acid (FFA) concentration is involved in the pathogenesis of hyposomatotropism associated with obesity. To evaluate this hypothesis, 10 healthy premenopausal women (body mass index 33.8 +/- 1.0 kg/m(2)) were studied in the follicular phase of their menstrual cycle at two occasions with a time interval of at least 8 wk, where body weight remained stable. Subjects were randomly assigned to treatment with either acipimox (an inhibitor of lipolysis, 250 mg orally 4 times daily) or placebo in a double-blind crossover design, starting 1 day before admission until the end of the blood sampling period. Blood samples were taken during 24 h with a sampling interval of 10 min for assessment of growth hormone (GH) concentrations, and GH secretion was estimated by deconvolution analysis. Identical methodology was used to study GH secretion in a historical control group of age-matched normal weight women. GH secretion was clearly blunted in obese women (total daily release 66 +/- 10 vs. lean controls: 201 +/- 23 mU x l(Vd)(-1) x 24 h(-1), P = 0.005, where l(Vd) is lite of distribution volume). Acipimox considerably enhanced total (113 +/- 50 vs. 66 +/- 10 mU x l(Vd)(-1) x 24 h(-1), P = 0.02) and pulsatile GH secretion (109 +/- 49 vs. 62 +/- 30 mU x l(Vd)(-1) x 24 h(-1), P = 0.02), but GH output remained lower compared with lean controls. Further analysis did not show any relationship between the effects of acipimox on GH secretion and regional body fat distribution. In conclusion, acipimox unleashes spontaneous GH secretion in obese women. It specifically enhances GH secretory burst mass. This might mean that lowering of systemic FFA concentrations by acipimox modulates neuroendocrine mechanisms that orchestrate the activity of the somatotropic ensemble.  相似文献   

2.
The ability of growth hormone (GH) to stimulate lipolysis and cause insulin resistance in skeletal muscle may be causally linked, but the mechanisms remain obscure. We investigated the impact of GH on the turnover of FFA and VLDL-TG, intramuscular triglyceride content (IMTG), and insulin sensitivity (euglycemic clamp) in nine healthy men in a randomized double-blind placebo-controlled crossover study after 8 days treatment with (A) Placebo+Placebo, (B) GH (2 mg daily)+Placebo, and (C) GH (2 mg daily)+Acipimox (250 mgx3 daily). In the basal state, GH (B) increased FFA levels (P<0.05), palmitate turnover (P<0.05), and lipid oxidation (P=0.05), but VLDL-TG kinetics were unaffected. Administration of acipimox (C) suppressed basal lipolysis but did not influence VLDL-TG kinetics. In the basal state, IMTG content increased after GH (B; P=0.03). Insulin resistance was induced by GH irrespective of concomitant acipimox (P<0.001). The turnover of FFA and VLDL-TG was suppressed by hyperinsulinemia during placebo and GH, whereas coadministration of acipimox induced a rebound increase FFA turnover and VLDL-TG clearance. We conclude that these results show that GH-induced insulin resistance is associated with increased IMTG and unaltered VLDL-TG kinetics; we hypothesize that fat oxidation in muscle tissue is an important primary effect of GH and that circulating FFA rather than VLDL-TG constitute the major source for this process; and the role of IMTG in the development of GH-induced insulin resistance merits future research.  相似文献   

3.
To determine how a reduction in maternal hypertriglyceridemia during late pregnancy may affect glucose/insulin relationships, pregnant and virgin rats were orally treated with acipimox, a potent antilipolytic agent. In 20-day pregnant rats receiving 80 mg of acipimox, plasma triglycerides (TG), free fatty acids (FFA), and glycerol decreased more than in virgin rats shortly after the drug (up to 7 hours), when compared with animals treated with distilled water, whereas plasma glucose level was unaffected by the treatment in either group of rats. When acipimox was given every 12 hours from day 17 to day 20 of pregnancy, plasma TG, FFA, and glycerol levels progressively increased, whereas they either decreased or did not change in virgin rats receiving the same treatment, with no effect in plasma glucose levels in either group. Fetal body weight was lower than in controls in 20-day pregnant rats that received acipimox for 3 days. On day 20 of pregnancy, 3 hours after receiving acipimox or distilled water, rats received a 2 g glucose/kg oral load and it was found that the change in plasma glucose was similar in both groups, whereas the increase in plasma insulin was greater in pregnant rats treated with acipimox. However, no difference was found in either variable after the oral glucose load in virgin rats receiving acipimox or distilled water. No differences in plasma glucose levels were found after intravenous (IV) administration of insulin in pregnant rats treated or not treated with acipimox. In conclusion, present results show that administration of acipimox during the last days of gestation inhibited lipolysis and decreased fetal weight. Over a short period of time, in pregnant rats, reductions of plasma FFA and TG after acipimox treatment improved the glucose-induced insulin release, but did not seem to have any effect in peripheral insulin resistance.  相似文献   

4.
Growth hormone (GH) can induce an accelerated lipolysis. Impaired secretion of GH in obesity results in the consequent loss of the lipolytic effect of GH. Dietary restriction as a basic treatment for obesity is complicated by poor compliance, protein catabolism, and slow rates or weight loss. GH has an anabolic effect by increasing insulin-like growth factor (IGF)-I. We investigated the effects of GH treatment and dietary restriction on lipolytic and anabolic actions, as well as the consequent changes in insulin and GH secretion in obesity. 24 obese subjects (22 women and 2 men; 22-46 years old) were fed a diet of 25 kcal/kg ideal body weight (IBW) with 1.2 g protein/kg IBW daily and were treated with recombinant human GH (n = 12, 0.18 U/kg IBW/week) or placebo (n = 12, vehicle injection) in a 12-week randomized, double-blind and placebo-controlled trial. GH treatment caused a 1.6-fold increase in the fraction of body weight lost as fat and a greater loss of visceral fat area than placebo treatment (35.3 vs. 28.5%, p < 0.05). In the placebo group, there was a loss in lean body mass (-2.62 +/- 1.51 kg) and a negative nitrogen balance (-4.52 +/- 3.51 g/day). By contrast, the GH group increased in lean body mass (1.13 +/- 1.04 kg) and had a positive nitrogen balance (1.81 +/- 2.06 g/day). GH injections caused a 1.6-fold increase in IGF-I, despite caloric restriction. GH response to L-dopa stimulation was blunted in all subjects and it was increased after treatment in both groups. GH treatment did not induce a further increase in insulin levels during an oral glucose tolerance test (OGTT) but significantly decreased free fatty acid (FFA) levels during OGTT. The decrease in FFA area under the curve during OGTT was positively correlated with visceral fat loss. This study demonstrates that in obese subjects given a hypocaloric diet, GH accelerates body fat loss, exerts anabolic effects and improves GH secretion. These findings suggest a possible therapeutic role of low-dose GH with caloric restriction for obesity.  相似文献   

5.
Twelve years of growth hormone (GH) therapy of short children born small for gestational age (SGA) have demonstrated that GH is an effective and well-tolerated therapy. Most children will reach a normal adult height (AH). AH of 55 SGA adolescents was comparable for those treated with a GH dose of 1 or 2 mg/m2 (approximately 0.033 or 0.066 mg/kg) per day, mean (SD) AH SDS being -1.2 (0.7) and -0.8 (0.7), respectively. GH therapy had no influence on the age at onset, the progression of puberty, duration of puberty and pubertal height gain. GH therapy induced higher fasting and glucose-stimulated insulin levels after 1 and 6 years, but 6 months after GH stop, all levels returned to normal. At baseline mean systolic blood pressure was significantly increased, but both systolic and diastolic blood pressure decreased significantly during 6 years of GH and remained so after GH stop. GH therapy demonstrated a beneficial effect on serum lipid profiles, body composition, bone mineral density and head growth. Treatment with 2 mg GH/m2 per day induced mean serum IGF-I levels of +2 SDS, whereas IGF-I levels remained within the normal range with 1 mg GH/m2 per day. In conclusion, long-term GH therapy of short SGA children with 1 mg/m2 per day appears to be effective and safe. Since the future consequences of high serum IGF-I levels during long-term GH therapy with 2 mg/m2 per day are as yet unknown, it seems safer to treat short prepubertal SGA children with a GH dose of 1 mg/m2 per day when children are to be treated continuously for many years.  相似文献   

6.
Low birth weight has been associated with impaired insulin sensitivity, type 2 diabetes mellitus, hypertension and cardiovascular disease in later life. GH therapy is known to increase fasting and postprandial insulin levels. For this reason concern has been expressed regarding the possible detrimental effects of GH therapy in children born small for gestational age (SGA). To assess the effects of GH therapy on body composition, carbohydrate metabolism and final height in short SGA children, 165 prepubertal short children born SGA were enrolled in either a multicentre, double-blind, randomized, dose-response GH trial (n = 75) or in a GH controlled trial (n = 90). The inclusion criteria were: (1) birth length standard deviation score (SDS) below -2; (2) age 3-8 years; (3) height SDS below -2. The children's mean (SD) age was 7.3 (2.1) years (GH dose-response trial) and 6.0 (1.5) years (GH controlled trial), birth length SDS was -3.6 and height SDS was -3.0 (0.7). In the GH dose-response trial, children were randomly assigned to either 1 mg GH/m(2) per day (group A, n = 41) or 2 mg GH/m(2) per day (group B, n = 38) ( approximately 0.033 or 0.067 mg/kg per day, respectively). In the GH controlled trial, children were randomly assigned to 1 mg GH/m(2) per day (n = 60) or served as controls (n = 30). Subjects underwent standard oral glucose tolerance tests and measurement of body mass index, systolic and diastolic blood pressure and serum lipids at baseline and after 1 and 6 years of GH therapy and again 6 months after discontinuation of GH. Body composition was measured by dual energy x-ray absorptiometry at baseline and again after 3 years in the GH controlled trial. Mean (SD) final height SDS was not significantly different between the two GH dosage groups: -1.2 (0.7) in group A and -0.8 (0.7) in group B. At the start of GH therapy, 8% of children had impaired glucose tolerance (IGT). Systolic blood pressure was significantly higher in comparison with healthy peers. GH therapy induced considerably higher fasting and glucose-stimulated insulin levels after 1 and 6 years, regardless of GH dosage. After 6 years, 4% of children had IGT. Six months after discontinuation of GH, glucose levels remained normal, whereas fasting and glucose-stimulated insulin returned to levels comparable to those of healthy peers. None of the children developed diabetes. During 6 years of GH therapy both systolic and diastolic blood pressure decreased significantly and remained so after discontinuation of GH therapy. At baseline all children had reduced bone mineral content and lean body mass. Fat mass was not significantly lower than normal. Treatment with 1 mg GH/m(2) per day resulted in a significant increase in (and normalization of) bone mineral content and lean body mass in comparison with untreated short SGA controls. Fat mass decreased during the first year of GH but returned to values comparable to those at baseline in the following 2 years of GH therapy. We found that long-term, continuous GH therapy in short children born SGA leads to a normalization of height during childhood and to a normal final height in most children, regardless of GH dosage. Only very short or relatively older children may need a dosage of 2 mg GH/m(2) per day. Long-term GH therapy had no adverse effects on glucose levels and serum lipids and had a positive effect on blood pressure, even with GH dosages of up to 2 mg/m(2) per day. However, as has been reported in other patient groups, GH induced higher fasting and glucose-stimulated insulin levels, indicating insulin resistance. After discontinuation of GH serum insulin levels returned to normal age-reference levels. Short SGA children have a reduction in bone mineral content and lean body mass when compared with healthy controls, which significantly improved (normalized) with GH therapy at a dose of 1 mg/m(2) per day.  相似文献   

7.
This study determined the role of intramuscular triglyceride (IMTG) and adipose lipolysis in the elevated fat oxidation during exercise caused by a high-fat diet. In four separate trials, six endurance-trained cyclists exercised at 50% peak O2 consumption for 1 h after a two-day control diet (22% fat, CON) or an isocaloric high-fat diet (60% fat, HF) with or without the ingestion of acipimox, an adipose lipolysis inhibitor, before exercise. During exercise, HF elevated fat oxidation by 72% and whole body lipolysis [i.e., the appearance rate of glycerol in plasma (Ra glycerol)] by 79% compared with CON (P < 0.05), and this was associated with a 36% increase (P < 0.05) in preexercise IMTG concentration. Although acipimox lowered plasma free fatty acid (FFA) availability, HF still increased fat oxidation and Ra glycerol to the same magnitude above control as the increase caused by HF without acipimox (i.e., both increased fat oxidation 13-14 micromol.kg(-1).min(-1)). In conclusion, the marked increase in fat oxidation after a HF diet is associated with elevated IMTG concentration and whole body lipolysis and does not require increased adipose tissue lipolysis and plasma FFA concentration during exercise. This suggests that altered substrate storage in skeletal muscle is responsible for increased fat oxidation during exercise after 2 days of an HF diet.  相似文献   

8.
Human immunodeficiency virus (HIV)-lipodystrophy is a syndrome characterized by changes in fat distribution and insulin resistance. Prior studies suggest markedly reduced growth hormone (GH) levels in association with excess visceral adiposity among patients with HIV-lipodystrophy. We investigated mechanisms of altered GH secretion in a population of 13 male HIV-infected patients with evidence of fat redistribution, compared with 10 HIV-nonlipodystrophic patients and 11 male healthy controls similar in age and body mass index (BMI). Although similar in BMI, the lipodystrophic group was characterized by increased visceral adiposity, free fatty acids (FFA), and insulin and reduced extremity fat. We investigated ghrelin and the effects of acute lowering of FFA by acipimox on GH responses to growth hormone-releasing hormone (GHRH). We also investigated somatostatin tone, comparing GH response to combined GHRH and arginine vs. GHRH alone with a subtraction algorithm. Our data demonstrate an equivalent number of GH pulses (4.1 +/- 0.6, 4.7 +/- 0.8, and 4.5 +/- 0.3 pulses/12 h in the HIV-lipodystrophic, HIV-nonlipodystrophic, and healthy control groups, respectively, P > 0.05) but markedly reduced GH secretion pulse area (1.14 +/- 0.27 vs. 4.67 +/- 1.24 ng.ml(-1).min, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 1.14 +/- 0.27 vs. 3.18 +/- 0.92 ng.ml(-1).min, P < 0.05 HIV-lipodystrophic vs. control), GH pulse area, and GH pulse width in the HIV-lipodystrophy patients compared with the control groups. Reduced ghrelin (418 +/- 46 vs. 514 +/- 37 pg/ml, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 418 +/- 46 vs. 546 +/- 45 pg/ml, P < 0.05, HIV-lipodystrophic vs. control), impaired GH response to GHRH by excess FFA, and increased somatostatin tone contribute to reduced GH secretion in patients with HIV-lipodystrophy. These data provide novel insight into the metabolic regulation of GH secretion in subjects with HIV-lipodystrophy.  相似文献   

9.
Growth hormone (GH) has potent protein anabolic actions, as evidenced by a significant decrease in lean body mass and muscle mass in chronic GH deficiency, and vice versa in patients with acromegaly. Depending on the prevailing physiological conditions and on which tissues and which proteins are under examination, the mechanisms involved include both stimulation of protein synthesis and restriction of protein breakdown. Apart from the possible direct effects of GH on protein dynamics, a number of additional anabolic agents, such as insulin, insulin-like growth factor-I and free fatty acids (FFA), are activated. Some of the most recent studies in the field have demonstrated a decisive role of stimulation of lipolysis and high circulating levels of FFA in orchestrating the maintenance of the protein pool of the body.  相似文献   

10.
Weanling female Wistar rats were supplemented with fish oil (1 g/kg body weight) for one generation. The male offspring received the same supplementation until to adult age. Rats supplemented with coconut fat were used as reference. Some rats were inoculated subcutaneously with a suspension (2 x 10(7) cells/mL) of Walker 256 tumor. At day 3, when the tumor was palpable, rats were treated with naproxen (N) (0.1 mg/mL), clenbuterol (Cb) (0.15 mg/kg body weight), and insulin (I) (10 U/kg body weight). At day 14 after tumor inoculation, the animals were killed. Tumor was removed and weighed. Blood, liver, and skeletal muscles were also collected for measurements of metabolites and insulin. In both tumor-bearing untreated rats and tumor-bearing rats supplemented with coconut fat, tumor growth, triacylglycerol, and blood lactate levels were higher, and glycogen content of the liver, blood glucose, cholesterol and HDL-cholesterol levels were lower as compared with the non-tumor-bearing and fish oil supplemented groups. Fish oil supplementation of tumor-bearing rats led to a partial recovery of the glycogen content in the liver and a full reversion of blood glucose, lactate, cholesterol, and HDL-cholesterol levels. The treatment with N plus Cb plus I attenuated cancer cachexia and decreased tumor growth in both coconut fat and fish oil supplemented rats. In conclusion, chronic fish oil supplementation decreased tumor growth and partially recovered cachexia. This beneficial effect of fish oil supplementation was potentiated by treatment with naproxen plus clenbuterol plus insulin.  相似文献   

11.
Growth hormone (GH) and cortisol are important to ensure energy supplies during fasting and stress. In vitro experiments have raised the question whether GH and cortisol mutually potentiate lipolysis. In the present study, combined in vivo effects of GH and cortisol on adipose and muscle tissue were explored. Seven lean males were examined four times over 510 min. Microdialysis catheters were inserted in the vastus lateralis muscle and in the subcutaneous adipose tissue of the thigh and abdomen. A pancreatic-pituitary clamp was maintained with somatostatin infusion and replacement of GH, insulin, and glucagon at baseline levels. At t = 150 min, administration was performed of NaCl (I), a 2 microg.kg(-1).min(-1) hydrocortisone infusion (II), a 200-microg bolus of GH (III), or a combination of II and III (IV). Systemic free fatty acid (FFA) turnover was estimated by [9,10-3H]palmitate appearance. Circulating levels of glucose, insulin, and glucagon were comparable in I-IV. GH levels were similar in I and II (0.50 +/- 0.08 microg/l, mean +/- SE). Peak levels during III and IV were approximately 9 microg/l. Cortisol levels rose to approximately 900 nmol/l in II and IV. Systemic (i.e., palmitate fluxes, s-FFA, s-glycerol) and regional (interstitial adipose tissue and skeletal muscle) markers of lipolysis increased in response to both II and III. In IV, they were higher and equal to the isolated additive effects of the two hormones. In conclusion, we find that GH and cortisol stimulate systemic and regional lipolysis independently and in an additive manner when coadministered. On the basis of previous studies, we speculate that the mode of action is mediated though different pathways.  相似文献   

12.
Wang  Yu-hong  Lin  Yuan  Xue  Ling  Wang  Jin-hui  Chen  Min-hu  Chen  Jie 《BMC endocrine disorders》2012,12(1):1-9
In addition to stimulating linear growth in children, growth hormone (GH) influences metabolism and body composition. These effects should be considered when individualizing GH treatment as dose-dependent changes in metabolic markers have been reported. Hypothesis: There are different dose-dependent thresholds for metabolic effects in response to GH treatment. A randomized, prospective, multicentre trial TRN 98-0198-003 was performed for a 2-year catch-up growth period, with two treatment regimens (a) individualized GH dose including six different dose groups ranging from 17–100 μg/kg/day (n=87) and (b) fixed GH dose of 43 μg/kg/day (n=41). The individualized GH dose group was used for finding dose–response effects, where the effective GH dose (ED 50%) required to achieve 50% Δ effect was calculated with piecewise linear regressions. Different thresholds for the GH dose were found for the metabolic effects. The GH dose to achieve half of a given effect (ED 50%, with 90% confidence interval) was calculated as 33(±24.4) μg/kg/day for Δ left ventricular diastolic diameter (cm), 39(±24.5) μg/kg/day for Δ alkaline phosphatase (μkat/L), 47(±43.5) μg/kg/day for Δ lean soft tissue (SDS), 48(±35.7) μg/kg/day for Δ insulin (mU/L), 51(±47.6) μg/kg/day for Δ height (SDS), and 57(±52.7) μg/kg/day for Δ insulin-like growth factor I (IGF-I) SDS. Even though lipolysis was seen in all subjects, there was no dose–response effect for Δ fat mass (SDS) or Δ leptin ng/ml in the dose range studied. None of the metabolic effects presented here were related to the dose selection procedure in the trial. Dose-dependent thresholds were observed for different GH effects, with cardiac tissue being the most responsive and level of IGF-I the least responsive. The level of insulin was more responsive than that of IGF-I, with the threshold effect for height in the interval between.  相似文献   

13.
Recent reports have shown that high-dose growth hormone (GH) treatment in short children born with small for gestational age (SGA) resulted in a pronounced acceleration of linear growth. We describe the results of multicenter trials of recombinant human GH (rhGH) treatment in short SGA children in Japan. Two clinical studies were performed and the results were combined. Study 1 comprised 104 SGA children and study 2 comprised 61 SGA children. The patients were divided into three groups: group 1 consisted of 20 patients (13 boys and 7 girls) who received rhGH 25 microg/kg per day six or seven times per week in the first year and 50 microg/kg per day in the second year and thereafter; group 2 consisted of 48 patients (28 boys, 20 girls) who received rhGH 45/50 microg/kg per day; group 3 consisted of 44 patients (28 boys, 16 girls) who received 90/100 microg/kg per day. The mean increments in height SDS were 0.46, 0.67 and 0.94 SD in boys and 0.49, 0.79 and 0.93 SD in girls in groups 1, 2 and 3, respectively. The mean increment in height SDS at 2 years in group 3 was significantly greater than that in group 1, but it was not significantly different from that in group 2 in boys and girls. Our data demonstrated that high-dose GH administration significantly improved height velocity and height SDS in short SGA children. Additional studies are necessary to optimize a long-term GH treatment regimen and combined luteinizing hormone releasing hormone analog treatment for final height. Careful observation is also necessary to assess the metabolic effects of high-dose GH, especially on carbohydrate metabolism.  相似文献   

14.
Lipolysis may regulate liver free fatty acid (FFA) uptake and triglyceride accumulation; both are potential causes of insulin resistance and liver damage. We evaluated whether 1) systemic FFA release is the major determinant of liver FFA uptake in fasting humans in vivo and 2) the beneficial metabolic effects of FFA lowering can be explained by a reduction in liver triglyceride content. Sixteen healthy subjects were subdivided in two groups of similar characteristics to undergo positron emission tomography with [(11)C]acetate and [(11)C]palmitate to quantify liver FFA metabolism (n = 8), or magnetic resonance spectroscopy (MRS) to measure hepatic fat content (n = 8), before and after the acute lowering of circulating FFAs by using the antilipolytic agent acipimox. MRS was again repeated after a 1-wk treatment period. Acipimox suppressed FFA levels while stimulating hepatic fractional extraction of FFAs (P < 0.05). As a result, fasting liver FFA uptake was decreased by 79% (P = 0.0002) in tight association with lipolysis (r = 0.996, P < 0.0001). The 1-wk treatment induced a significant improvement in systemic (+30%) and liver (+70%) insulin sensitivity (P < 0.05) and decreased circulating triglycerides (-20%, P = 0.06) and liver enzymes (ALT -20%, P = 0.03). No change in liver fat content was observed after either acute or sustained FFA suppression. We conclude that acute and sustained inhibitions of lipolysis and liver FFA uptake fail to deplete liver fat in healthy human subjects. Liver FFA uptake was decreased in proportion to FFA delivery. As a consequence, liver and systemic insulin sensitivity were improved, together with liver function, independently of changes in hepatic triglyceride accumulation.  相似文献   

15.
Two experiments were conducted to determine the effect of free fatty acids (FFA) and glucose treatment on growth hormone (GH) and luteinizing hormone secretion in the pig. In Experiment (Exp) 1, 15 prepuberal gilts received an intravenous infusion of FFA (n = 5; 3 ml of 10% Liposyn II/kg), glucose (n = 5; 1 g/kg), or saline (n = 5; 3 ml of 0.9%/kg). Jugular blood samples were collected every 15 min for 2 hr before and 3 hr after intravenous infusion of saline, FFA, and glucose. Synthetic [Ala15]-h growth hormone-releasing factor-(1-29)NH2 (1 microgram/kg) and gonadotropin-releasing hormone (0.2 micrograms/kg) were administered 30 min after infusion (Time 0 = infusion). In Exp 2, eight prepuberal gilts received either FFA (n = 4) or saline (n = 4) as described in Exp 1, except that treatments were given every hour ove a 10-hr period. Blood samples were collected every 15 min from 1 hr before to 10 hr after the start of FFA or saline infusion. In Exp 1, the peak GH response to growth hormone-releasing factor was delayed by 45 min (P less than 0.01) by glucose treatment and suppressed (P less than 0.01) by FFA treatment. The luteinizing hormone response to gonadotroph-releasing hormone was suppressed (P less than 0.03) by glucose and enhanced (P less than 0.03) by FFA. In Exp 2, the number of GH pulses was increased (P less than 0.05) by FFA infusion and GH concentrations were positively correlated (r = 0.58, P less than 0.0003) with FFA concentrations, while luteinizing hormone pulse amplitude was greater (P less than 0.01) in FFA gilts than in saline gilts. These results indicate that FFA are more effective modulators of GH secretion than acute hyperglycemia, while metabolic status can alter pituitary responsiveness to gonadotropin-releasing hormone.  相似文献   

16.
Mothers' nutrition during lactation programs growth in their offspring. We studied the contribution of the growth hormone (GH) for this programming, evaluating GH mRNA expression. Lactating dams were grouped as follows: C, control diet with 23% protein; PR, 8% protein-restricted diet; and ER, energy-restricted diet, receiving the control diet in restricted quantities of the PR group's ingestion. Some pups were killed at weaning; the others received the control diet until they were sacrificed as adults. Pituitary GH mRNA was analyzed by Northern blot analysis. At weaning, the ER and PR animals had lower GH mRNA levels (-29% and -18%, respectively) and lower length as well as body weight. Ninety-day-old PR offspring showed a lower body length (-5%), whereas ER offspring showed a higher one (+5%); however, at 180 days, the lengths were not different. Both 90- and 180-day-old animals showed body weight differences against control animals, with PR offspring showing a lower (-10%) and ER offspring showing a higher (+12%) body weight. GH mRNA was higher in ER offspring at 90 and 180 days (+19% and +22%, respectively); it was lower in PR offspring at 90 and 180 days (-19% and -17%, respectively). Thus, we showed a direct relation between GH mRNA expression and length as well as body weight. We suggest that malnutrition during lactation may program GH mRNA expression patterns in adulthood and that these changes could be responsible for differences in growth patterns.  相似文献   

17.
Body weight gain and shank-toe growth during a 26-day treatment period following hypophysectomy were 55 and 46%, respectively, of control values, but the body weight gain was unaffected and bone growth only slightly reduced when the hypophysectomized chickens were fed a low dose of corticosterone (5 ppm). Bovine growth hormone (0.5 mg GH/kg body wt/day for 18 days) enhanced body weight gain and shank-toe length increase (an estimate of bone growth) by 46 and 33%, respectively, compared to the growth of hypophysectomized chickens receiving only corticosterone. These same endpoints were increased approximately 24% after ovine growth hormone treatment in hypophysectomized chickens not receiving corticosterone. Body weight gain during 18 days of treatment with bovine prolactin (0.5 mg PRL/kg/day) was 27% greater than the value for corticosterone-treated hypophysectomized chickens, but bone growth was unaffected. The mammalian GH preparations increased heart weight of the hypophysectomized chickens (25-29%), but pectoralis muscle weight was unaffected. GH treatment enhanced thymal weights by 71% in corticosterone-treated hypophysectomized chickens, and by 93% in hypophysectomized animals not receiving corticosterone. GH had no significant effect on bursal weights, and PRL had no effect on either of these lymphoid organ weights in corticosterone-treated hypophysectomized chickens. GH increased liver and adipose tissue weights considerably more than the large increases that followed treatment of hypophysectomized chickens with corticosterone alone (69 and 126% greater, respectively), but had no effect on these endpoints in hypophysectomized chickens not receiving corticosterone. PRL also greatly increased liver and adipose tissue weights in corticosterone-treated hypophysectomized chickens (79 and 75%, respectively). These results provide evidence that mammalian GH enhances body weight gain, bone growth, and the growth of several organs in the hypophysectomized chicken. Mammalian PRL increased body weight gain, liver weight, and adipose tissue weight in corticosterone-treated hypophysectomized chickens, but did not influence bone growth or the weights of the heart, pectoralis, thymi, or bursa.  相似文献   

18.
To assess whether short-term growth hormone (GH) treatment can improve the linear growth in children who were born small for gestational age (SGA), we started a randomized multicenter trial in 26 age- and sex-matched prepubertal children born SGA. During the 1st year of GH therapy, all children received GH 0.23 mg/kg/week, then during the 2nd year, 13 children received the same dose (group A), and in the other 13 children, the dose of GH was doubled, i.e., 0.46 mg/kg/week (group B). During the 1st year of therapy, the growth velocity significantly (p<0.0001) increased in all patients. During the 2nd year, group A showed a significant decrease of the growth velocity (p<0.015), whereas group B maintained the growth rate. The height in group A children significantly increased during the 1st and the 2nd year of GH therapy (p<0.000002 and p<0.000001, respectively), reaching the normal range in 8 out of 13 children at the end of 2 years of GH therapy. The height in group B children significantly increased during the 1st and the 2nd year of GH therapy (p<0.000001 and p<0.000001, respectively), reaching the normal range in all 11 children who completed the GH therapy. The height gain was similar in groups A and B treated with the same GH dosage during the 1st year of therapy. A greater increase in height gain was found in children of group B treated with the higher GH dosage during the 2nd year of therapy as compared with group A (p<0.02). Significant increases in insulin-like growth factor I (p<0.0001), acid-labile subunit (p<0.0002), and bone/chronological age ratio (p<0.0001) were found after the 1st year of GH therapy, but no significant changes were observed during the 2nd year, independently of the GH dose. In conclusion, the height velocity of children born SGA significantly increases during the 1st year of GH therapy, diminishes, but can decrease during the 2nd year, if the GH dosage is not raised.  相似文献   

19.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

20.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号