首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of pyruvate dehydrogenase (PDG), isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase was found in the extracts of the cells of Bac. polymyxa 153, an organism producing polymyxin B. Dependence of the activity of the above enzymes on the carbon source in the medium, aeration conditions, strain features and culture age was shown. A low level of polymyxin B biosynthesis was observed at high activity of PDG and dehydrogenases of the tricarbonic acid cycle. Increased antibiotic production was recorded against the background of decreases values of the above enzyme activities.  相似文献   

2.
The activity of a number of enzymes of glycolysis, tricarbonic acids, cycle, pentose phosphatase shunt and some important hydrolases, acid nucleases and adenosine triphosphate among them, was cytochemically determined in the rabbit lens epithelium. The data obtained clearly demonstrate the role the epithelium plays in energy producing processes of the lens, which are connected both with anaerobic and aerobic phases of glucose utilization and its direct oxydation, as well as with synthesis of some substances, with the transport of organic and inorganic molecules.  相似文献   

3.
Ammonium nitrogen was studied for its metabolism in the tissues of ruminants in transition from pre- to postnatal development in norm and with disorders in gastroenteric digestion. It is established that the intensity of ammonium genesis and glycolysis processes as well as a cycle of tricarbonic acids change in newborn calves as compared to adult animals. The ammonium toxicosis development in sick animals, which is confirmed by an increase of the ammonia level and intensification of the reactions of ammonium- and ureogenesis in tissues of the gastroenteric tract, liver and kidneys.  相似文献   

4.
Lactate (LDH) and succinate (SDH) dehydrogenases activities decreased in red and white muscles of rat under acute ethanol loading indicating the inhibition of energy metabolism and stepped up lactic acid formation under stress conditions. Aspartate aminotransferase (AAT) and glutamate dehydrogenase (GDH) were found to increase. In contrast to these, the AMP deaminase activity decreased in white muscle suggestive of decreased deamination of nucleic acids. The ornithine cycle enzymes such as argininosuccinate synthetase (ArSS) and arginase indicated diminished activities showing low level of operation of urea cycle and consequent accumulation of ammonia was observed in red muscle with low production of glutamine, whereas in the case of white muscle this trend is reversed. The possible alterations of ethanol toxicity on energy requirements, transdeamination patterns, ureogenesis and glutamine production have been discussed.  相似文献   

5.
Bacillus caldotenax was cultivated in chemostat experiments at 65°C with a chemically defined minimal medium. Glycolysis, tricarboxylic acid cycle, pentose phosphate pathway and the respiratory chain were active as demonstrated by measuring the corresponding enzymes. No enzyme activity of the Entner-Doudoroff pathway could be detected. The specific activities of the citrate cycle enzymes were up to 10 times higher as compared to the enzymes of glycolysis. At dilution rates between 0.3 and 2.2 h-1 none of the main metabolic pathways was regulated. In contrast the isocitrate lyase was regulated (drop of activity with increasing growth rates). As a result of a batch culture with glucose and acetate as carbon sources a regulation model was proposed: glucose, or a metabolite of glucose, represses the isocitrate lyase; in the absence of glucose acetate acts as an inducer.Abbreviations DCIP dichlorphenol indophenol - ED Entner-Doudoroff pathway - EMP Emden-Meyerhof-Parnas pathway - ICL isocitrate lyase - PP pentose phosphate pathway - TCC tricarbonic acid cycle  相似文献   

6.
Abstract The activities of NADH, succinate and lactate dehydrogenases have been measured during the cell cycle of Bacillus subtilis . All three enzymes showed an oscillatory pattern of activity expressed as two maxima and two minima per division cycle. For both succinate and lactate dehydrogenases the maxima occurred at approximately 0.2 and 0.6 of a cycle. The maxima of NADH dehydrogenase activity were out of phase at 0.4 and 0.9 of a cycle and occurred at the same time as the rises in respiratory activity previously reported for this bacterium.  相似文献   

7.
Cyclopropenoid fatty acids in the diet of rainbow trout caused significant reductions in liver protein and activity of glucose-6-phosphate dehydrogenase, NADP-linked isocitrate dehydrogenase, lactate dehydrogenase, and malate dehydrogenase. Changes in total activity were usually accompanied by similar changes in specific activity. The activity of glucose-6-phosphate dehydrogenase appeared to be more sensitive to the ingestion of cyclopropenoid fatty acids than the other dehydrogenases studied. Feeding 20 ppb aflatoxin B(1) to rainbow trout did not significantly change the activity of the dehydrogenases except for a small increase in the activity of glucose-6-phosphate dehydrogenase after 21 days of feeding. Relationships of these changes to the cocarcinogenicity of cyclopropenoid fatty acids and the carcinogenicity of aflatoxin are discussed.  相似文献   

8.
Enzyme histochemical techniques were applied to frozen sheep uteri from different stages of the oestrous cycle. The localization and activities of succinate, lactate, glucose-6-phosphate, and isocitrate (NADP+) dehydrogenases and acid and alkaline phosphatases were studied in the luminal and glandular epithelia, caruncle and myometrium. Enzyme activity in the sections was scored on a scale of 0--5. In general the enzyme activity in the uterine caruncles and epithelia was higher than in the myometrium. The myometrium did not show any alkaline phosphatase activity and isocitrate dehydrogenase (NADP+) activity was negligible. The low activities of acid phosphatase and lactate dehydrogenase and the moderate levels of glucose-6-phosphate and succinate dehydrogenases in the myometrium were constant. The caruncular tissue showed high levels of phosphatases and glucose-6-phosphate dehydrogenase, moderate levels of lactate and succinate dehydrogenases, and low levels of isocitrate dehydrogenase (NADP+) throughout the oestrous cycle. Much lower phosphatase and isocitrate dehydrogenase (NADP+) levels were found in the epithelium of deep glands compared with superficial glands. The high activity of acid and alkaline phosphatases in the luminal epithelium and the superficial glands was constant from mid-cycle to ovulation, but a significant decrease was observed immediately after ovulation. The level of dehydrogenases in epithelia was generally high and did not change during the oestrous cycle.  相似文献   

9.
Summary Although cytochemical methods exist for measuring dehydrogenases that act on substrates involved in the production of chemical energy from sugars, virtually no methods exist for measuring the dehydrogenases that act on fatty acids. Yet the oxidation of fatty acids accounts for over 60% of the oxidative activity of cardiac muscle. Consequently a new quantitative cytochemical method, based on a new substrate (DL-S--hydroxybutyryl-N-acetyl cysteamine), has been developed for measuring the activity of hydroxy-acyl coenzyme A dehydrogenase, which is the penultimate step of the -oxidation of fatty acids to acetyl-coenzyme A that is used in the Krebs' cycle. Menadione or phenazine methosulphate is used as the intermediate hydrogen-acceptor, with neotetrazolium chloride as the final acceptor. The medium contains nitroprusside, ostensibly to react with any cysteamine liberated by hydrolysis of the substrate. As a control, cysteamine is substituted for the substrate. The concentrations of reactants have been optimized for cardiac muscle; the reaction is linear with thickness of the sections and with time of reaction from 15 to 60 min.  相似文献   

10.
Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.  相似文献   

11.
The effects of microbial phenolic metabolites on the activities of enzymes of the tricarboxylic acid cycle were investigated in isolated mitochondria. The detection of metabolites of the tricarboxylic acid cycle in the blood of patients with sepsis as potential biomarkers of mitochondrial dysfunction was investigated. We found that microbial phenolic metabolites possess an inhibitory effect on the activity of dehydrogenases, as determined by the reduction of dichlorophenolindophenol and nitroblue tetrazolium in liver mitochondria and liver homogenates. The effect was more pronounced in the case of the oxidation of NAD-dependent substrates than succinate oxidation, as well as at lower concentrations of microbial metabolites than in the case of inhibition of respiration. Using gas chromatography coupled with mass spectrometry it was shown that the content of the tricarboxylic acid cycle metabolites is lower in the blood of patients with sepsis as compared to healthy donors. Our data demonstrate that microbial phenolic acids can significantly contribute to mitochondrial dysfunction and to metabolic suppression, both of which are characteristic of these pathologies.  相似文献   

12.
The tricarboxylic acid (TCA) cycle is the central hub of oxidative metabolism, running in the classic forward direction to provide carbon for biosynthesis and reducing agents for generation of ATP. Our metabolic tracer studies in melanoma cells showed that in hypoxic conditions the TCA cycle is largely disconnected from glycolysis. By studying the TCA branch point metabolites, acetyl CoA and citrate, as well as the metabolic endpoint glutamine and fatty acids, we developed a comprehensive picture of the rewiring of the TCA cycle that occurs in hypoxia. Hypoxic tumor cells maintain proliferation by running the TCA cycle in reverse. The source of carbon for acetyl CoA, citrate, and fatty acids switches from glucose in normoxia to glutamine in hypoxia. This hypoxic flux from glutamine into fatty acids is mediated by reductive carboxylation. This reductive carboxylation is catalyzed by two isocitrate dehydrogenases, IDH1 and IDH2. Their combined action is necessary and sufficient to effect the reverse TCA flux and maintain cellular viability.  相似文献   

13.
Kinetic analyses done with cell-free extracts of this basidiomycete fungus showed that the NADP-linked glutamate dehydrogenase exhibited positively co-operative interactions with the substrates 2-oxoglutarate and NADPH, negatively co-operative kinetics with NADP+ and was extremely sensitive to inhibition of deamination activity by ammonium and/or ammonia. The NAD-linked enzyme showed positive co-operativity with NADH, Michaelis-Menten kinetics with all other substrates and was subject only to mild inhibitions by the reaction products. Considered together with the values of the Michaelis constants, these results indicate that the former enzyme is primarily concerned with the amination of 2-oxoglutarate when the concentration of this substrate exceeds about 4 mM, while the NAD-linked enzyme is able to aminate or deaminate as metabolic conditions require. Synthesis of both enzymes was repressed by addition of carbamyl phosphate or N-acetyl-glutamate to mycelial cultures growing in media containing glucose and ammonium as carbon and nitrogen sources. Growth in media containing urea results in repression of the NADP-linked glutamate dehydrogenase and depression of the NAD-linked enzyme. Such results indicate a connexion between the glutamate dehydrogenases and the urea cycle. It is suggested that under normal conditions of growth on complex media nitrogen is assimilated in the form of amino acids and that the glutamate dehydrogenases act in support of transminases to allow this process to continue, and in support of the urea cycle to allow the disposal of excess nitrogen.  相似文献   

14.
The mammary gland tissue hexose monophosphate dehydrogenase activities were low in virgin, pregnant and weaned rats, but increased at the onset of lactation. The muscle and liver glucose 6-phosphate dehydrogenase activity peaked at early and late lactation respectively. The liver 6-phosphogluconate dehydrogenase peaked in late pregnancy and remained elevated through lactation. The muscle 6-phosphogluconate dehydrogenase peaked at the onset of lactation. The adipose tissue hexose monophosphate dehydrogenases exhibited small changes during pregnancy and lactation. The spleen hexose monophosphate dehydrogenases did not respond to lactation An overshoot in both the liver and the adipose tissue hexose monophosphate dehydrogenases was observed on weaning. Serum glucose levels remained unchanged throughout pregnancy, lactation and weaning. Only liver glucose 6-phosphate dehydrogenase activity correlated with plasma insulin, which also correlated positively with food consumption. The results demonstrate that tissue-specific control of the hexose monophosphate dehydrogenases occurs in the female rat during its complete lactation cycle.  相似文献   

15.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

16.
Intraperitoneal administration of meta-nitrobenzoic, 3,5-dinitrobenzoic, 2,4,6-trinitrobenzoic and 3,5-dinitro-4-methylbenzoic acids to the white mice in a dose equal to LD50 has induced an increase in the methaemoglobin content in their blood. Total activity of dehydrogenases of pentosephosphate pathway, content of 2,3-diphosphoglycerate increase in response to the intoxication evoked by the mentioned acids. The acute intoxication does not practically change the activity of the key enzymes of antioxidant protection: superoxide-dismutase, catalase and glutathione peroxidase.  相似文献   

17.
Effects of 1-methyl-4-phenylpyridinium ion (MPP+) on the activities of NAD+- or NADP+-linked dehydrogenases in the TCA cycle were studied using mitochondria prepared from mouse brains. Activities of NAD+- and NADP+-linked isocitrate dehydrogenases, NADH- and NADPH-linked glutamate dehydrogenases, and malate dehydrogenase were little affected by 2 mM of MPP+. However, alpha-ketoglutarate dehydrogenase activity was significantly inhibited by MPP+. Kinetic analysis revealed a competitive type of inhibition. Inhibition of alpha-ketoglutarate dehydrogenase may be one of the important mechanisms of MPP+-induced inhibition of mitochondrial respiration, and of neuronal degeneration.  相似文献   

18.
Previous experiments have suggested that a partial metabolic block might restrain the oxidative metabolism of the cord tissue between the decarboxylation of pyruvate and the oxidation of succinate. Some of the dehydrogenases of the Kreb's cycle were assayed on acetone powders prepared from human cords. Isocitrate dehydrogenases (both NAD and NADP-specific) have much lower activities than the alpha-ketoglutarate- and malate dehydrogenases; a partial block might be located at this level. Moreover, the malic enzyme has a rather high activity, and might play a significant role by regenerating NADPH in a tissue where other sources of this coenzyme are practically absent.  相似文献   

19.
The status of some dehydrogenases (succinate dehydrogenase, mitochondrial alpha-glycerophosphate dehydrogenase and beta-hydroxybutyrate dehydrogenase) was studied in the course of long-term oral administration of cholesterol to rabbits. The data obtained indicate that within the first weeks of cholesterol administration there was a decrease in enzymatic activity of the dehydrogenases under study that mirrored the impairment of energy function of mitochondria. After experiments were initiated, alimentary hypercholesterolemia led to imbalance of anabolism and catabolism bearing resemblance to the status of oxidative processes in the Krebs cycle. There is every reason to believe that such a complex of changes in the dehydrogenases during hypercholesterolemia is characteristic for the initial stages of atherosclerosis. Elimination of cholesterol from the body by single hemosorption results in a tendency towards making the circulating lymphocytes egress from hypoxia. It is inferred that study of enzymatic activity of dehydrogenases should be used for the diagnosis of and the assessment of therapeutic measures for atherosclerosis under experimental and clinical conditions.  相似文献   

20.
A human fecal isolate, characterized by morphological, physiological and biochemical data as a strain of Peptostreptococcus roductus, was shown to contain NAD-dependent 3 alpha- and 3 beta-hydroxysteroid dehydrogenases and a NADP-dependent 7 beta-hydroxysteroid dehydrogenase. All enzyme activities could be demonstrated in crude extracts and in membrane fractions. The 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were synthesized constitutively. Specific enzymatic activities were significantly reduced when bacteria were grown in the presence of 3-keto bile acids, while other bile acids were ineffective. For the 3 alpha (3 beta)-hydroxysteroid dehydrogenase, a pH optimum of 8.5 (9.5) and a molecular weight of 95,000 (132,000) was estimated. 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were heat-sensitive (about 75% inactivation at 50 degrees C for 10 min). The 7 beta-hydroxysteroid dehydrogenase was already present in uninduced cells, but specific activity could be enhanced up to more than 2.5-fold when bacteria were grown in the presence of 7-keto bile acids. Disubstituted bile acids were more effective than trisubstituted ones, ursodeoxycholic acid was ineffective as an inducer. A pH optimum of 10.0 and a molecular weight of about 82,000 were shown for the 7 beta-hydroxysteroid dehydrogenase. The enzyme preparation reduced the 7-keto group of corresponding bile acids. Again the affinities of disubstituted bile acids for the enzyme were higher than those of the trisubstituted bile acids, but no significant differences between conjugated and free bile acids were observed. The 7 beta-hydroxysteroid dehydrogenase was heat-sensitive (72% inactivation at 50 degrees C for 10 min), but was detectable at 4 degrees C for at least 48 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号