首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, microarray data analysis, real‐time quantitative PCR and immunohistochemistry were used to detect the expression levels of SSRP1 in colorectal cancer (CRC) tissue and in corresponding normal tissue. The association between structure‐specific recognition protein 1 (SSRP1) expression and patient prognosis was examined by Kaplan‐Meier analysis. SSRP1 was knocked down and overexpressed in CRC cell lines, and its effects on proliferation, cell cycling, migration, invasion, cellular energy metabolism, apoptosis, chemotherapeutic drug sensitivity and cell phenotype‐related molecules were assessed. The growth of xenograft tumours in nude mice was also assessed. MiRNAs that potentially targeted SSRP1 were determined by bioinformatic analysis, Western blotting and luciferase reporter assays. We showed that SSRP1 mRNA levels were significantly increased in CRC tissue. We also confirmed that this upregulation was related to the terminal tumour stage in CRC patients, and high expression levels of SSRP1 predicted shorter disease‐free survival and faster relapse. We also found that SSRP1 modulated proliferation, metastasis, cellular energy metabolism and the epithelial‐mesenchymal transition in CRC. Furthermore, SSRP1 induced apoptosis and SSRP1 knockdown augmented the sensitivity of CRC cells to 5‐fluorouracil and cisplatin. Moreover, we explored the molecular mechanisms accounting for the dysregulation of SSRP1 in CRC and identified microRNA‐28‐5p (miR‐28‐5p) as a direct upstream regulator of SSRP1. We concluded that SSRP1 promotes CRC progression and is negatively regulated by miR‐28‐5p.  相似文献   

3.
4.
Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells.  相似文献   

5.
6.
Nucleophosmin (NPM) is a nucleolar phosphoprotein that binds the tumor suppressors p53 and p19(Arf) and is thought to be indispensable for ribogenesis, cell proliferation, and survival after DNA damage. The NPM gene is the most frequent target of genetic alterations in leukemias and lymphomas, though its role in tumorigenesis is unknown. We report here the first characterization of a mouse NPM knockout strain. Lack of NPM expression results in accumulation of DNA damage, activation of p53, widespread apoptosis, and mid-stage embryonic lethality. Fibroblasts explanted from null embryos fail to grow and rapidly acquire a senescent phenotype. Transfer of the NPM mutation into a p53-null background rescued apoptosis in vivo and fibroblast proliferation in vitro. Cells null for both p53 and NPM grow faster than control cells and are more susceptible to transformation by activated oncogenes, such as mutated Ras or overexpressed Myc. In the absence of NPM, Arf protein is excluded from nucleoli and is markedly less stable. Our data demonstrate that NPM regulates DNA integrity and, through Arf, inhibits cell proliferation and are consistent with a putative tumor-suppressive function of NPM.  相似文献   

7.
The presence of a TP53 gene mutation can influence tumour response to some treatments, especially in breast cancer. In this study, we analysed p53 mRNA expression, LOH at 17p13 and TP53 mutations from exons 2 to 11 in 206 patients with breast carcinoma and correlated the results with disease-free and overall survival. The observed mutations were classified according to their type and location in the three protein domains (transactivation domain, DNA binding domain, oligomerization domain) and correlated with disease-free and overall survival. In our population, neither p53 mRNA expression nor LOH correlated with outcome. Concerning TP53 mutations, 27% of tumours were mutated (53/197) and the presence of a mutation in the TP53 gene was associated with worse overall survival (p = 0.0026) but not with disease-free survival (p = 0.0697), with median survival of 80 months and 78 months, respectively. When alterations were segregated into mutation categories and locations, and related to survival, tumours harbouring mutations other than missense mutations in the DNA binding domain of P53 had the same survival profiles as wild-type tumours. Concerning missense mutations in the DNA binding domain, median disease-free and overall survival was 23 months and 35 months, respectively (p = 0.0021 and p<0.0001, respectively), compared with 78 and 80 months in mutated tumours overall. This work shows that disease-free and overall survival in patients with a frameshift mutation of TP53 or missense mutation in the oligomerization domain are the same as those in wild-type TP53 patients.  相似文献   

8.
9.
Previous studies have shown that p53 is involved in the repair of bleomycin-induced DNA damage, and that the frequency of bleomycin-induced chromatid aberrations is elevated in G(2)-treated p53 null transgenic mouse embryo fibroblasts (MEF) as compared to isogenic controls. To further characterize p53-mediated DNA repair, we studied the effect of p53 status on the ability of the DNA repair inhibitor 1-ss-D-arabinofuranosylcytosine (AraC) to sensitize MEF to bleomycin-induced chromatid aberrations. Both p53+/+ and p53-/- MEF were treated in G(2) with 0 to 7.5 microg/ml bleomycin in the presence or absence of AraC (5x10(-5) M). The frequency of bleomycin-induced chromatid aberrations was significantly higher in p53-/- cells than wild-type cells in the absence of AraC. AraC treatment significantly increased the frequency of bleomycin-induced chromatid aberrations in p53+/+ MEF to the levels in p53-/- (no AraC) but had no effect in p53-/- MEF. These results suggest that an AraC-sensitive DNA repair component is altered or absent in p53-/- cells. Similar results were observed in p53-mutant WTK1 and wild-type TK6 human lymphoblast cells exposed to 0 to 3 microg/ml bleomycin in G(2). However, AraC did cause a small increase in bleomycin sensitivity in WTK1 cells. This difference from the p53-/- MEF response may be due to differences in p53-mutant phenotype. To determine whether mutation of p53 alters DNA replication fidelity, p53+/+ and p53-/- MEF were exposed to 0 to 1 microg/ml mitomycin C (MMC). MMC did not induce chromosome aberrations in either cell line treated in G(2) but did with the same effectiveness in both cell lines treated in S-phase. Thus, p53 deficiency does not affect DNA replication fidelity or the repair of MMC-induced DNA damage.  相似文献   

10.
11.
Since the p53 gene function is critical to how a cell responds to DNA damage, we investigated the p53 status in Chinese hamster cell lines commonly used in genotoxicity tests for cytogenetic damage around the world. These included: Chinese hamster ovary K1 (CHO-K1), Chinese hamster ovary WBL (CHO-WBL), and Chinese hamster lung (CHL) cells. The results of DNA sequencing, protein analysis, and cell cycle analysis demonstrate that the CHO-K1 and CHO-WBL cell lines have mutant p53 sequence [a mutation in codon 211 in exon 6 resulting in a change from Thr (ACA) to Lys (AAA)], mutant protein (high spontaneous levels that are non-inducible after X-irradiation), and mutant function (lack of G1 checkpoint). Interestingly, the CHL cell line has a completely wild-type p53 DNA sequence. However, the CHL cells have an abnormally high spontaneous level of wild-type p53 protein expression that is not inducible after X-irradiation, yet there is some evidence of G1 delay after irradiation. The protein data suggests that p53 in CHL cells is not being regulated normally, and thus is probably not functioning normally. The mechanism leading to this abnormal regulation of p53 in CHL cells clearly does not involve mutation in the p53 gene. Overall, the CHL cell line may be similar to the CHO cell lines, in that they all appear to have abnormal p53 function. Further work is needed to determine whether the presence of spontaneously high levels of wild-type p53 in CHL cells results in a difference in response to DNA damage (quantitatively or qualitatively) compared to the p53 mutant CHO cell lines.  相似文献   

12.
13.
BACKGROUND: Gene therapy of human tumors with adenovirus vectors presents a clinical research challenge and a potential opportunity in cancer therapy. One of the research challenges is that endpoints like tumor reduction, time to recurrence, and survival do not provide information about whether a potential therapeutic infects the targeted cells or whether the transferred gene functions or induces a cellular response. Therefore, a flow cytometric approach was developed for a wildtype, p53 encoding adenoviral vector (Ad-p53) that provides (1) the relative level of p53 transferred by p53 immunoreactivity, (2) mdm2 immunoreactivity as an assay of p53 activity, and (3) estimates of the percentage of infected cells by dual parameter analysis (p53 versus mdm2). METHODS: Three prostate cancer cell lines (PC-3, LNCaP, DU 145) that are null, wild-type, and mutant for p53, respectively, and two ovarian cancer cell lines (PA1, MDAH 2774) that are wild-type and mutant for p53, respectively, were tested for immunoreactivity and lack of cross-reactivity with the monoclonal antibodies, DO-7 (anti-p53) and IF2 (anti-mdm2). Optimal dual staining conditions for a flow cytometric assay employing saturating levels of antibody were developed and tested by infection of PC-3, PA1, and MDAH 2774 with Ad-p53 or a control virus, Ad-luc. Dual staining with DO-7 and propidium iodide was used to determine any biological effect of the transferred gene. RESULTS: Neither DO-7 nor IF2 showed appreciable cross-reactions by Western blot analysis of representative prostate or ovarian cell lines. By flow cytometric titration, DO-7 appears to be a high avidity antibody (saturation staining of 10(6) DU 145 cells with 0.5ug) whereas IF2 appears less so (optimum signal to noise ratio at 1ug/10(6) cells). Infection with Ad-p53 was detected at 6 to 48 hours post infection as a uniform relative increase in p53 levels over background p53 levels. Coincident increases in mdm2 immunoreactivity were also detected. DNA content measurements of PA1 and MDAH 2774 cells indicated that G1 arrest and/or apoptosis occurred subsequent to Ad-p53 infection. p53 and mdm2 levels and DNA content distributions for Ad-luc infected cells were equivalent to uninfected cells. CONCLUSIONS: A flow cytometric approach to measure the efficacy of an Ad-p53 gene therapy vector was developed that detects not only the gene transferred but also the activity of the transferred gene product.  相似文献   

14.
Checkpoint kinase-1 (CHK1) is a key regulator of the DNA damage-elicited G2-M checkpoints. The aim of the present study was to investigate the effects of a selective CHK1 inhibitor, Chir124, on cell survival and cell cycle progression following ionizing radiation (IR). Treatment with Chir-124 resulted in reduced clonogenic survival and abrogated the IR- induced G2-M arrest in a panel of isogenic HCT116 cell lines after IR. This radiosensitizing effect was relatively similar between p53-/- and p53-sufficient wild type (WT) HCT116 cells. However, the number of mitotic cells (as measured by assessing the phosphorylation of mitotic proteins) increased dramatically in p53-/- HCT116 cells after concomitant Chir-124 exposure, compared to IR alone, while no such effect was observed in p53-sufficient WT HCT116 cells. In p53-/- cells, Chir-124 treatment induced a marked accumulation of polyploid cells that were characterized by micronucleation or multinucleation. p21-/- HCT116 cells displayed a similar pattern of response as p53-/- cells. Chir-124 was able to radiosensitize HCT116 cells that lack checkpoint kinase-2 (CHK2) or that were deficient for the spindle checkpoint protein Mad2. Finally, Chir-124 could radiosensitize tetraploid cell lines, which were relatively resistant against DNA damaging agents. Altogether these results suggest that Chir-124-mediated radiosensitization is profoundly influenced by the p53 and cell cycle checkpoint system.  相似文献   

15.
Different vaccine constructs based on DNA vaccines and viral recombinant vaccines expressing mouse p53 were compared for induction of protective immune responses to challenge with a sarcoma cell line that expresses high levels of mutated p53 protein. Viral recombinant vaccines based on E1-deleted adenovirus or vaccinia virus recombinants expressing p53 with wild-type sequences in the mutational hotspot domain and a single mutation in the tetramerization domain (p53(mu338)) failed to induce protection against progression of this tumor cell line. A DNA vaccine expressing a form of p53 carrying the same point mutations as the tumor cell line showed low efficacy that was comparable to that of a DNA vaccine expressing p53(mu338). Efficacy of the DNA vaccine was augmented upon expressing p53(mu338) as a fusion protein linked to a viral leader sequence. Other modifications such as fusion to the signal sequence of the lysosome-associated membrane protein (LAMP) or ubiquitin failed to improve the efficacy of the vaccine to p53. Protection mediated by CD4(+) and CD8(+) T cells was specific for p53.  相似文献   

16.
Cyclooxygenase-2 (COX-2) overexpression has been linked to cell survival, transformation, and hyperproliferation. We examined the regulation of the tumor suppressor gene p53 and p53 target genes by prostaglandin E(2) (PGE(2)) in human synovial fibroblasts (HSF). PGE(2) induced a time-dependent increase in p53 Ser(15) phosphorylation, with no discernible change in overall p53 levels. PGE(2)-dependent Ser(15) phosphorylation was apparently mediated by activated p38 MAP kinase as SB202190, a p38 kinase inhibitor, blocked the response. Overexpression of a MKK3 construct, but not MKK1, stimulated SB202190-sensitive p53 Ser(15) phosphorylation. PGE(2)-stimulated [phospho-Ser(15)]p53 transactivated a p53 response element (GADD45)-luciferase reporter in transiently transfected HSF (SN7); the effect was compromised by overexpression of a dominant-negative mutant (dnm) of p53 or excess p53S15A expression plasmid but mimicked by a constitutively active p53S15E expression construct. PGE(2), wtp53 expression in the presence of PGE(2), and p53S15E suppressed steady-state levels of MEKK1-induced MMP-1 mRNA, effects nullified with co-transfection of p53 dnm or p53S15A. MEKK1-induced MMP-1 promoter-driven luciferase activity was largely dependent on a c/EBPbeta-NF-kappaB-like enhancer site at -2008 to -1972 bp, as judged by deletion and point mutation analyses. PGE(2), overexpression of p53wt with PGE(2), or p53S15E abolished the MEKK1-induced MMP-1 promoter luciferase activity. Gel-shift/super gel-shift analyses identified c/EBPbeta dimers and c/EBPbeta/NF-kappaB p65 heterodimers as binding species at the apparent site of MEKK1-dependent transactivation. PGE(2)-stimulated [phospho-Ser(15)]p53 abrogated the DNA binding of c/EBPbeta dimers and c/EBPbeta/NF-kappaB p65 heterodimers. Our data suggest that COX-2 prostaglandins may be implicated in p53 function and p53 target gene expression.  相似文献   

17.
Phosphorylation of the p53 tumor suppressor at Ser20 (murine Ser23) has been proposed to be critical for disrupting p53 interaction with its negative regulator, MDM2, and allowing p53 stabilization. To determine the importance of Ser23 for the function of p53 in vivo, we generated a mouse in which the endogenous p53 locus was targeted to replace Ser23 with alanine. We show that, in mouse embryonic fibroblasts generated from Ser23 mutant mice, Ser23 mutation did not dramatically reduce IR-induced p53 protein stabilization or p53-dependent cell cycle arrest. However, in Ser23 mutant thymocytes and in the developing cerebellum, p53 stabilization following IR was decreased and resistance to apoptosis was observed. Homozygous Ser23 mutant animals had a reduced lifespan, but did not develop thymic lymphomas or sarcomas that are characteristic of p53-/- mice. Instead, Ser23 mutant animals died between 1 and 2 years with tumors that were most commonly of B-cell lineage. These data support an important role for Ser20/23 phosphorylation in p53 stabilization, apoptosis and tumor suppression.  相似文献   

18.
Neuronal cell death after DNA damage requires p53 and Bax, but the mechanism by which p53 activation leads to Bax translocation and cell death in neurons is not known. We report here that Peg3/Pw1 is up-regulated after DNA damage in cortical neurons in a p53-dependent manner. Overexpression of Peg3/Pw1 leads to decreased neuronal viability. The deleterious effect of Peg3/Pw1 on neuronal survival is abrogated by deletion of either p53 or Bax, indicating an essential role for both in Peg3/Pw1-mediated neuronal death. Moreover, overexpression of a Peg3/Pw1 dominant negative protein inhibits Bax translocation and neuronal cell death after DNA damage. These findings implicate Peg3/Pw1 as a mediator between p53 and Bax in a neuronal cell death pathway activated by DNA damage.  相似文献   

19.
This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号