首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landouzy–Dejerine muscular dystrophy is a rare hereditary disease with prevalence of 0.9 to 1.4 in 100000. Clinically the disease is characterized by weakness and atrophy of the facial and shoulder girdle muscles. It is caused by partial deletion of the 3.3-kb subtelomeric D4Z4 repeat on chromosome 4 (locus 4q35). This paper presents a critical review of the literature data and hypotheses explaining molecular mechanisms of progressive fascioscapulohumeral muscular dystrophy.  相似文献   

2.
3.
Duchenne型肌营养不良症是我国常见的X连锁隐性遗传性肌病。目前广泛应用的动物模型是mdx小鼠,但其没有很好地模拟人类疾病特点。最近,Sacco等报导了一个新的小鼠模型mdx/mTRG2,它不仅有抗肌萎缩蛋白的缺陷,还有端粒酶的缺失,较好地模拟了人类疾病的症状。通过该模型,人们认识到抗肌萎缩蛋白的缺陷引起肌细胞退化,肌肉干细胞被激活对抗其退化,但干细胞的过度增殖又导致端粒长度下降,引起肌肉干细胞增殖能力的衰竭,最终产生了肌营养不良的表型。该模型使人们对Duchenne型肌营养不良症的发病机制有了进一步的理解,为其治疗提供了新的研究平台。  相似文献   

4.
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.  相似文献   

5.
Fasioscapulohumeral muscular dystrophy (FSHD) has recently been localized to 4q35. We have studied four families with FSHD. Linkage to the 4q35 probes D4S163, D4S139, and D4S171 was confirmed. We found no recombinants helpful in detailed localization of the FSHD gene. Two of our families include males with a rapidly progressive muscle disease that had been diagnosed, on the basis of clinical features, as Duchenne muscular dystrophy. One of these males is available for linkage study and shares the haplotype of his FSHD-affected aunt and cousin.  相似文献   

6.
Dystrophic muscle undergoes repeated cycles of degeneration/regeneration, characterized by the presence of hypertrophic fibers. In order to elucidate the signaling pathways that govern these events, we investigated Akt activation in normal and dystrophic muscle. Akt is activated in neonatal muscle and in actively dividing myoblasts, supporting a developmental role for Akt signaling. Akt activation was detected at very early, prenecrotic stages of disease pathogenesis, and maximal activation was observed during peak stages of muscle hypertrophy. Duchenne muscular dystrophy patients exhibit a similar pattern of Akt activation. Mice with sarcoglycan-deficient muscular dystrophy possess more severe muscle pathology and display elevated Akt signaling. However, the highest levels of Akt activation were found in dystrophin-utrophin-deficient muscle with very advanced dystrophy. We propose that Akt may serve as an early biomarker of disease and that Akt activation mediates hypertrophy in muscular dystrophy. Current investigations are focused on introducing constitutively active and dominant-negative Akt into prenecrotic mdx mice to determine how early modification of Akt activity influences disease pathogenesis.  相似文献   

7.
The objective was to assess the effect of the hereditary myopathic disease (muscular dystrophy) on 4 growth parameters: body-weight, head-body length, skull weight and cranial length in the Syrian hamster over a 4-13 month period. A control colony of 34 males and 32 females was compared to a muscular dystrophy colony consisting of 37 males and 27 females. The monthly means of the 4 growth parameters were computed and full data were used for computations of analysis of variance with regression of each group, sex and growth parameter. Intersex and intergroup comparisons of the same parameters were made using analysis of covariance. In the controls, the male bodies were heavier and longer than the female bodies; males grew over the total period. In dystrophic hamsters, males were heavier than females, but females were longer. In both control and dystrophic hamsters, female skulls were longer and heavier. In all parameters the means of the control colony were greater than those of the dystrophic colony relative to age. The disease factor in the muscular dystrophy colony adversely influenced all 4 growth parameters.  相似文献   

8.
9.
Facioscapulohumeral muscular dystrophy (FSHD) seems to be caused by a complex epigenetic disease mechanism as a result of contraction of the polymorphic macrosatellite repeat D4Z4 on chromosome 4qter. Currently, the exact mechanism causing the FSHD phenotype is still not elucidated. In this review, we discuss the genetic and epigenetic changes observed in patients with FSHD and the possible disease mechanisms that may be associated with FSHD pathogenesis.  相似文献   

10.
Striated muscle-specific disruption of the dystroglycan (DAG1) gene results in loss of the dystrophin-glycoprotein complex in differentiated muscle and a remarkably mild muscular dystrophy with hypertrophy and without tissue fibrosis. We find that satellite cells, expressing dystroglycan, support continued efficient regeneration of skeletal muscle along with transient expression of dystroglycan in regenerating muscle fibers. We demonstrate a similar phenomenon of reexpression of functional dystroglycan in regenerating muscle fibers in a mild form of human muscular dystrophy caused by disruption of posttranslational dystroglycan processing. Thus, maintenance of regenerative capacity by satellite cells expressing dystroglycan is likely responsible for mild disease progression in mice and possibly humans. Therefore, inadequate repair of skeletal muscle by satellite cells represents an important mechanism affecting the pathogenesis of muscular dystrophy.  相似文献   

11.
Muscular dystrophies comprise an important group of inherited disorders of man. Although the disease has been studied extensively, little is known about the underlying primary pathomechanisms. Consequently, treatment of patients is difficult and prognosis is poor. An animal model of muscular dystrophy is a useful research tool for approaching the basic problems of pathogenesis in muscle diseases. An inherited progressive muscular dystrophy of mink which resembles the amyotonic forms of human muscular dystrophy is currently under study. Clinically, the earliest sign is progressive muscular weakness and atrophy. Muscle enzyme activities in serum are usually elevated to pathologic levels. Urinary creatine/creatinine ratio is elevated. Pathologic changes are limited to skeletal muscle and are typical of those seen in amyotonic forms of human muscular dystrophy. These changes include variation in diameter size of muscle fibers, centralized nuclei, floccular and hyaline degeneration of scattered muscle fibers, increase in connective tissue in endomysial and perimysial areas, and regenerative attempts. Both type I and type II muscle fibers are involved in the disease process. Genetic studies indicate an autosomal recessive mode of inheritance. Although the primary defect in muscular dystrophy is traditionally thought to reside in skeletal muscle, recent studies have produced theories of primary involvement of other tissues and organ systems. These theories are presented and relationships to the traditional theory are discussed.  相似文献   

12.
The dystrophin-glycoprotein complex (DGC) is a multisubunit complex that connects the cytoskeleton of a muscle fiber to its surrounding extracellular matrix. Mutations in the DGC disrupt the complex and lead to muscular dystrophy. There are a few naturally occurring animal models of DGC-associated muscular dystrophy (e.g. the dystrophin-deficient mdx mouse, dystrophic golden retriever dog, HFMD cat and the delta-sarcoglycan-deficient BIO 14.6 cardiomyopathic hamster) that share common genetic protein abnormalities similar to those of the human disease. However, the naturally occurring animal models only partially resemble human disease. In addition, no naturally occurring mouse models associated with loss of other DGC components are available. This has encouraged the generation of genetically engineered mouse models for DGC-linked muscular dystrophy. Not only have analyses of these mice led to a significant improvement in our understanding of the pathogenetic mechanisms for the development of muscular dystrophy, but they will also be immensely valuable tools for the development of novel therapeutic approaches for these incapacitating diseases.  相似文献   

13.
Muscular dystrophies comprise a diverse group of genetic disorders that lead to muscle wasting and, in many instances, premature death. Many mutations that cause muscular dystrophy compromise the support network that connects myofilament proteins within the cell to the basal lamina outside the cell, rendering the sarcolemma more permeable or leaky. Here we show that deletion of the gene encoding cyclophilin D (Ppif) rendered mitochondria largely insensitive to the calcium overload-induced swelling associated with a defective sarcolemma, thus reducing myofiber necrosis in two distinct models of muscular dystrophy. Mice lacking delta-sarcoglycan (Scgd(-/-) mice) showed markedly less dystrophic disease in both skeletal muscle and heart in the absence of Ppif. Moreover, the premature lethality associated with deletion of Lama2, encoding the alpha-2 chain of laminin-2, was rescued, as were other indices of dystrophic disease. Treatment with the cyclophilin inhibitor Debio-025 similarly reduced mitochondrial swelling and necrotic disease manifestations in mdx mice, a model of Duchenne muscular dystrophy, and in Scgd(-/-) mice. Thus, mitochondrial-dependent necrosis represents a prominent disease mechanism in muscular dystrophy, suggesting that inhibition of cyclophilin D could provide a new pharmacologic treatment strategy for these diseases.  相似文献   

14.
Mice deficient in α-sarcoglycan (Sgca-null mice) develop progressive muscular dystrophy and serve as a model for human limb girdle muscular dystrophy type 2D. Sgca-null mice suffer a more severe myopathy than that of mdx mice, the model for Duchenne muscular dystrophy. This is the opposite of what is observed in humans and the reason for this is unknown. In an attempt to understand the cellular basis of this severe muscular dystrophy, we isolated clonal populations of myogenic progenitor cells (MPCs), the resident postnatal muscle progenitors of dystrophic and wild-type mice. MPCs from Sgca-null mice generated much smaller clones than MPCs from wild-type or mdx dystrophic mice. Impaired proliferation of Sgca-null myogenic precursors was confirmed by single fiber analysis and this difference correlated with Sgca expression during MPC proliferation. In the absence of dystrophin and associated proteins, which are only expressed after differentiation, SGCA complexes with and stabilizes FGFR1. Deficiency of Sgca leads to an absence of FGFR1 expression at the membrane and impaired MPC proliferation in response to bFGF. The low proliferation rate of Sgca-null MPCs was rescued by transduction with Sgca-expressing lentiviral vectors. When transplanted into dystrophic muscle, Sgca-null MPCs exhibited reduced engraftment. The reduced proliferative ability of Sgca-null MPCs explains, at least in part, the severity of this muscular dystrophy and also why wild-type donor progenitor cells engraft efficiently and consequently ameliorate disease.  相似文献   

15.
石姗平  习阳 《生命的化学》2020,40(2):277-283
面肩肱型肌营养不良症(facioscapulohumeral muscular dystrophy, FSHD)是世界范围内位列第三的肌营养不良症,呈常染色体显性遗传。FSHD以肌肉坏死为特征,在疾病表现、进展和发病年龄方面具有显著的家族内和家庭间变异性。在不同的年龄段,FSHD的症状表现程度各不相同,通常在青少年时期发病,20岁前的外显率达95%。本文综述了FSHD的发病机制、诊断和治疗的现状,并重点阐述了与治疗相关的研究进展,为今后该疾病的机制研究和临床治疗提供了参考。  相似文献   

16.
Muscle-eye-brain disease (MEB) is an autosomal recessive disease of unknown etiology characterized by severe mental retardation, ocular abnormalities, congenital muscular dystrophy, and a polymicrogyria-pachygyria-type neuronal migration disorder of the brain. A similar combination of muscle and brain involvement is also seen in Walker-Warburg syndrome (WWS) and Fukuyama congenital muscular dystrophy (FCMD). Whereas the gene underlying FCMD has been mapped and cloned, the genetic location of the WWS gene is still unknown. Here we report the assignment of the MEB gene to chromosome 1p32-p34 by linkage analysis and homozygosity mapping in eight families with 12 affected individuals. After a genomewide search for linkage in four affected sib pairs had pinpointed the assignment to 1p, the MEB locus was more precisely assigned to a 9-cM interval flanked by markers D1S200 proximally and D1S211 distally. Multipoint linkage analysis gave a maximum LOD score of 6.17 at locus D1S2677. These findings provide a starting point for the positional cloning of the disease gene, which may play an important role in muscle function and brain development. It also provides an opportunity to test other congenital muscular dystrophy phenotypes, in particular WWS, for linkage to the same locus.  相似文献   

17.
Summary A set of nine polymorphic loci defined by DNA probes was studied for linkage with the disease locus in ten families with a history of Duchenne muscular dystrophy (DMD), and three families with a history of Becker muscular dystrophy (BMD). The results confirm DMD and BMD linkage to all marker loci and suggest closer linkage of several probes than hitherto detected. This will be of practical interest for risk calculations in affected families.  相似文献   

18.
Congenital muscular dystrophy is a heterogeneous group of inherited muscle diseases characterized clinically by muscle weakness and hypotonia in early infancy. A number of genes harboring causative mutations have been identified, but several cases of congenital muscular dystrophy remain molecularly unresolved. We examined 15 individuals with a congenital muscular dystrophy characterized by early-onset muscle wasting, mental retardation, and peculiar enlarged mitochondria that are prevalent toward the periphery of the fibers but are sparse in the center on muscle biopsy, and we have identified homozygous or compound heterozygous mutations in the gene encoding choline kinase beta (CHKB). This is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. In muscle of three affected individuals with nonsense mutations, choline kinase activities were undetectable, and phosphatidylcholine levels were decreased. We identified the human disease caused by disruption of a phospholipid de novo biosynthetic pathway, demonstrating the pivotal role of phosphatidylcholine in muscle and brain.  相似文献   

19.
An X‐linked muscular dystrophy, with deficiency of full‐length dystrophin and expression of a low molecular weight dystrophin‐related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome‐walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X‐linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild‐type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7‐year‐old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed.  相似文献   

20.
Mitsuhashi S  Nishino I 《Autophagy》2011,7(12):1559-1561
Mitophagy, selective autophagy of mitochondria, has been extensively demonstrated in cultured cell models but has never been described in skeletal muscle in the context of muscle disease. We recently reported the first example of human muscle disease where mitophagy plays a role in the peculiar muscle pathology. This disease is caused by loss-of-function mutations in the CHKB gene encoding choline kinase β. "Patients" and rostrocaudal muscular dystrophy (rmd) mice, spontaneous Chkb mutants, develop congenital muscular dystrophy with a peculiar mitochondrial abnormality--mitochondria are markedly enlarged at the periphery of muscle fibers and absent from the center. Choline kinase is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. Our discovery demonstrates that a phosphatydilcholine biosynthetic defect leads to mitochondrial dysfunction and increased mitophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号