首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsite mapping of enzymes. Depolymerase computer modelling.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have developed a depolymerase computer model that uses a minimization routine. The model is designed so that, given experimental bond-cleavage frequencies for oligomeric substrates and experimental Michaelis parameters as a function of substrate chain length, the optimum subsite map is generated. The minimized sum of the weighted-squared residuals of the experimental and calculated data is used as a criterion of the goodness-of-fit for the optimized subsite map. The application of the minimization procedure to subsite mapping is explored through the use of simulated data. A procedure is developed whereby the minimization model can be used to determine the number of subsites in the enzymic binding region and to locate the position of the catalytic amino acids among these subsites. The degree of propagation of experimental variance into the subsite-binding energies is estimated. The question of whether hydrolytic rate coefficients are constant or a function of the number of filled subsites is examined.  相似文献   

2.
In this paper we extend our earlier work on subsite mapping and show that our model for depolymerase action can be used to accurately predict product ratios vs the extent of reaction when a polymer is hydrolyzed. The experimental product ratios for Bacillus amyloliquefaciens α-amylase acting on reducing end-labeled 14C-maltodextrins ranging in chain length 3 to 10 are reported. These data and Michaelis parameters are used with a depolymerase computer model (J. D. Allen, 1977, Ph.D. thesis, University of Arkansas; J. D. Allen and J. A. Thoma, 1976, Biochem. J.159, 105) to compute an optimized subsite map. The depolymerase computer model generates a 10-subsite map for B. amyloliquefaciens α-amylase with the catalytic site located to the left of subsite 7. The binding affinities of the subsites are then used as the sole input in another computer program to quantitatively predict the mole fraction of products vs the extent of hydrolysis for substrates of varying chain length. Excellent agreement is obtained between the computed and experimental data for seven maltodextrins examined.  相似文献   

3.
A previously described endo-(1----4)-beta-D-xylanase produced by Aspergillus niger was allowed to react with linear unlabeled and labeled D-xylo-oligosaccharides ranging from D-xylotriose to D-xylo-octaose. No evidence of multiple attack or of condensation and trans-D-xylosylation reactions was found. Maximum rates and Michaelis constants were measured at 40 degrees and pH 4.85. The former increased with increasing chain-length from D-xylotriose through D-xylohexaose to approximately 70% of that on soluble larchwood D-xylan, and then decreased slightly for D-xyloheptaose and D-xylo-octaose. Michaelis constants decreased monotonically with increasing chain-length. Bond-cleavage frequencies were highest near the reducing end of short substrates, with the locus of highest frequencies moving towards the middle of larger substrates. These data indicated that the endo-D-xylanase has five main subsites, with the catalytic site located between the third and fourth subsites, counting from the nonreducing end of the bound substrate. The subsite to the nonreducing side of the catalytic site strongly repels its corresponding D-xylosyl residue, while the two subsites farther towards the nonreducing end of the substrate strongly attract their corresponding residues. The subsite to the reducing side of the catalytic site moderately attracts D-xylosyl residues, while the next one towards the reducing end has a high affinity for them. The residual error of the numerical estimation was allocated largely to the Michaelis constants of the different D-xylo-oligosaccharides, whose calculated values were appreciably smaller than measured values, especially for shorter substrates. This suggests that the subsite model cannot fully account for the experimental data. Estimated and measured values of maximum rates, bond-cleavage frequencies, and dissociation constant when the active site is fully occupied by substrate agreed more closely with each other.  相似文献   

4.
This study represents the first characterisation of the substrate-binding site of Bacillus licheniformis alpha-amylase (BLA). It describes the first subsite map, namely, number of subsites, apparent subsite energies and the dual product specificity of BLA. The product pattern and cleavage frequencies were determined by high-performance liquid chromatography, utilising a homologous series of chromophore-substituted maltooligosaccharides of degree of polymerisation 4-10 as model substrates. The binding region of BLA is composed of five glycone, three aglycone-binding sites and a 'barrier' subsite. Comparison of the binding energies of subsites, which were calculated with a computer program, shows that BLA has similarity to the closely related Bacillus amyloliquefaciens alpha-amylase.  相似文献   

5.
A computer program has been evaluated for subsite map calculations of depolymerases. The program runs in windows and uses the experimentally determined bond cleavage frequencies (BCFs) for determination of the number of subsites, the position of the catalytic site and for calculation of subsite binding energies. The apparent free energy values were optimized by minimization of the differences of the measured and calculated BCF data. The program called suma (SUbsite Mapping of alpha-Amylases) is freely available for research and educational purposes via the Internet (E-mail: gyemant@tigris.klte.hu). The advantages of this program are demonstrated through alpha-amylases of different origin, e.g. porcine pancreatic alpha-amylase (PPA) studied in our laboratory, in addition to barley and rice alpha-amylases published in the literature. Results confirm the popular 'five subsite model' for PPA with three glycone and two aglycone binding sites. Calculations for barley alpha-amylase justify the '6 + 2 + (1) model' prediction. The binding area of barley alpha-amylase is composed of six glycone, two aglycone binding sites followed by a barrier subsite at the reducing end of the binding site. Calculations for rice alpha-amylase represent an entirely new map with a '(1) + 2 + 5 model', where '(1)' is a barrier subsite at the nonreducing end of the binding site and there are two glycone and five aglycone binding sites. The rice model may be reminiscent of the action of the bacterial maltogenic amylase, that is, suggesting an exo-mechanism for this enzyme.  相似文献   

6.
I Matsui  K Ishikawa  S Miyairi  S Fukui  K Honda 《Biochemistry》1992,31(22):5232-5236
The 210th lysine (K) residue in the Saccharomycopsis alpha-amylase (Sfamy) molecule was replaced by arginine (R) and asparagine (N) residues by site-directed mutagenesis. The influences of the replacements on the bond-cleavage pattern for several substrates were analyzed. Both mutant enzymes, K210R and K210N, cleave mainly the first glycosidic bond from the reducing end of maltotetraose (G4), while the native enzyme hydrolyzes mainly the second bond from the reducing end. We changed successfully the major cleavage point in the hydrolysis reaction of G4. The 8th subsite affinities of the K210R and K210N enzymes are calculated to be +2.52 and -0.01 kcal/mol, respectively, whereas that of the native enzyme is +3.32 kcal/mol as reported in the previous paper. These affinity values suggest that the K210 residue composes the 8th subsite, one of major subsites, and that a positively charged amino residue is necessary for the 8th subsite affinity. The K210N enzyme is found to be less active for short substrates like maltotetraose (G4) than for long substrates like amylose A (approximately G18). The reduced catalytic activity specifically for the short substrates is also attributable to the remarkable decrease in the affinity of the 8th subsite.  相似文献   

7.
Trp120 of Aspergillus awamori glucoamylase has previously been shown by chemical modification to be essential for activity and tentatively to be located near subsite 4 of the active site. To further test its role, restriction sites were inserted in the cloned A.awamori gene around the Trp120 coding region, and cassette mutagenesis was used to replace it with His, Leu, Phe and Tyr. All four mutants displayed 2% or less of the maximal activity (kcat) of wild-type glucoamylase towards maltose and maltoheptaose. Michaelis constants (KM) of mutants decreased 2- to 3-fold for maltose and were essentially unchanged for maltoheptaose compared with the wild type, except for a greater than 3-fold decrease for maltoheptaose with the Trp120----Tyr mutant. This mutant also bound isomaltose more strongly and had more selectivity for its hydrolysis than wild-type glucoamylase. A subsite map generated from malto-oligosaccharide substrates having 2-7 D-glucosyl residues indicated that subsites 1 and 2 had greater affinity for D-glucosyl residues in the Trp120----Tyr mutant than in wild-type glucoamylase. These results suggest that Trp120 from a distant subsite is crucial for the stabilization of the transition-state complex in subsites 1 and 2.  相似文献   

8.
Hydrolysis of partially deacetylated chitosans by ChitinaseB (ChiBeta) from Serratia marcescens results in mixtures of oligosaccharides typically between 2 and 20 sugar residues. The amounts of different oligomer fractions depend on the degree of acetylation of the starting chitosans. We have used experimentally determined distributions of hydrolysis products to develop a model for chitosan hydrolysis by ChiB. Important elements of the model include interaction parameters for acetylated/deacetylated units in each of the six subsites in the active cleft and degree of processivity (multiple attack). The hydrolysis reaction is described as a chemical reaction with an activation barrier that depends on the substrate sequence presented to the enzyme subsites. Using a Monte Carlo approach, the interaction parameters were refined by minimizing the difference between observed and predicted amounts of hydrolysis products obtained upon degradation of chitosan with a degree of acetylation of 65%. The final model can accurately predict complex patterns of oligosaccharides produced in the hydrolysis of chitosans with various degrees of acetylation, as well as patterns observed during reactions with chito-oligosaccharides. The behavior of a ChiB mutant with a mutation in subsite +2 (Gly188Asp), which reduces the affinity for an acetylated sugar, could be predicted correctly by introducing one single change in the model parameters (the interaction energy for an acetylated unit in the +2 subsite). The proposed model may be used to explore degradation products for different enzyme-substrates combinations and to optimize conditions for preparation of specific oligosaccharides. In addition, the model provides insight into subsite interaction parameters and the degree of processivity, which complements previous experimental studies on the mode of action of ChiB.  相似文献   

9.
Exo-(1,4)-alpha glucan lyase (GLase) was purified from a red alga Gracilaria chorda. The enzyme was activated 1.3-fold in the presence of Ca(2+) and Cl(-) ions. The ions also stabilized the enzyme increasing the temperature of its maximum activity from 45 degrees C to 50 degrees C. GLase was inactivated by chemical modification with carbodiimide and a carboxyl group of the enzyme was shown essential to the lyase activity. A tryptophanyl residue(s) was also shown to be important for the activity and was probably involved in substrate binding. K(m) values of the enzyme were 2.3 mM for maltose, 0.4 mM for maltotriose and 0.1 mM for maltooligosaccharides of degree of polymerization (dp) 4-7, and the k(0) values for the oligosaccharides were similar (42-53 s(-1)). The analysis of these kinetic parameters showed that the enzyme has four subsites to accommodate oligosaccharides. The subsite map of GLase was unique, since subsite 1 and subsite 2 have large positive and small negative affinities, respectively. The subsite map of this type has not been found in other enzymes with exo-action on alpha-1,4-glucan. The K(m) and k(0) values for the polysaccharides were lower (0.03 mM) and higher (60-100 s(-1)), respectively, suggesting the presence of another affinity site specific to the polysaccharides.  相似文献   

10.
The extracellular poly(3-hydroxybutyrate) depolymerase purified from Alcaligenes faecalis T1 has two disulfide bonds, one of which appears to be necessary for the full enzyme activity. This depolymerase hydrolyzed not only hydrophobic poly(3-hydroxybutyrate) but also water-soluble trimer and larger oligomers of D-(−)-3-hydroxybutyrate, regardless of their solubilities in water. Kinetic analyses with oligomers of various sizes indicated that the substrate cleaving site of the enzyme consisted of four subsites with individual affinities for monomer units of the substrate. Analyses of the hydrolytic products of oligomers, which had labeled D-(−)-3-hydroxybutyrate at the hydroxy terminus, showed that the enzyme cleaved only the second ester linkage from the hydroxy terminus of the trimer and tetramer, and acted as an endo-type hydrolase toward the pentamer and higher oligomers. The enzyme appeared to have a hydrophobic site which interacted with poly(3-hydroxybutyrate) and determined the affinity of the enzyme toward the hydrophobic substrate.  相似文献   

11.
The substrate binding site of an acidic endo-1,4-beta-xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) of Aspergillus niger was investigated using 1,4-beta-xylooligosaccharides (1-3H)-labelled at the reducing end. Bond cleavage frequencies and V/Km parameters of the oligosaccharides were determined under conditions of unimolecular hydrolysis and, according to the method of Suganuma et al. (J. Biochem. (Tokyo) (1978) 84, 293-316), used for evaluation of subsite affinities. The substrate binding site of the enzyme was found to consist of seven subsites, numbered -IV, -III, -II, -I, I, II and III, towards the subsite binding the reducing end unit of xyloheptaose. The catalytic groups were localized between subsites -I and I, the affinities of which have not been determined. All other subsites showed positive values of affinities for binding xylosyl residues. The values decrease from subsites -II and II, similarly in both directions. As a consequence of such an almost symmetric distribution of affinities around the catalytic groups, the enzyme cleaves preferentially the bonds in the oligosaccharides which are most distant from both terminals. Thus, the acidic A. niger beta-xylanase appears to be an endo-1,4-beta-xylanase attacking polymeric substrates in a random fashion. This conclusion was supported by viscosimetric measurements with carboxymethylxylan as a substrate.  相似文献   

12.
Glycoside hydrolase family 77 (GH77) belongs to the alpha-amylase superfamily (Clan H) together with GH13 and GH70. GH77 enzymes are amylomaltases or 4-alpha-glucanotransferases, involved in maltose metabolism in microorganisms and in starch biosynthesis in plants. Here we characterized the amylomaltase from the hyperthermophilic bacterium Thermus thermophilus HB8 (Tt AMase). Site-directed mutagenesis of the active site residues (Asp293, nucleophile; Glu340, general acid/base catalyst; Asp395, transition state stabilizer) shows that GH77 Tt AMase and GH13 enzymes share the same catalytic machinery. Quantification of the enzyme's transglycosylation and hydrolytic activities revealed that Tt AMase is among the most efficient 4-alpha-glucanotransferases in the alpha-amylase superfamily. The active site contains at least seven substrate binding sites, subsites -2 and +3 favoring substrate binding and subsites -3 and +2 not, in contrast to several GH13 enzymes in which subsite +2 contributes to oligosaccharide binding. A model of a maltoheptaose (G7) substrate bound to the enzyme was used to probe the details of the interactions of the substrate with the protein at acceptor subsites +2 and +3 by site-directed mutagenesis. Substitution of the fully conserved Asp249 with a Ser in subsite +2 reduced the activity 23-fold (for G7 as a substrate) to 385-fold (for maltotriose). Similar mutations reduced the activity of alpha-amylases only up to 10-fold. Thus, the characteristics of acceptor subsite +2 represent a main difference between GH13 amylases and GH77 amylomaltases.  相似文献   

13.
Glycoside hydrolase family (GH) 11 xylanase A from Bacillus subtilis (BsXynA) was subjected to site-directed mutagenesis to probe the role of aglycon active site residues with regard to activity, binding of decorated substrates and hydrolysis product profile. Targets were those amino acids identified to be important by 3D structure analysis of BsXynA in complex with substrate bound in the glycon subsites and the + 1 aglycon subsite. Several aromatic residues in the aglycon subsites that make strong substrate–protein interactions and that are indispensable for enzyme activity, were also important for the specificity of the xylanase. In the + 2 subsite of BsXynA, Tyr65 and Trp129 were identified as residues that are involved in the binding of decorated substrates. Most interestingly, replacement of Tyr88 by Ala in the + 3 subsite created an enzyme able to produce a wider variety of hydrolysis products than wild type BsXynA. The contribution of the + 3 subsite to the substrate specificity of BsXynA was established more in detail by mapping the enzyme binding site of the wild type xylanase and mutant Y88A with labelled xylo-oligosaccharides. Also, the length of the cord – a long loop flanking the aglycon subsites of GH11 xylanases – proved to impact the hydrolytic action of BsXynA. The aglycon side of the active site cleft of BsXynA, therefore, offers great potential for engineering and design of xylanases with a desired specificity.  相似文献   

14.
To clarify the substrate-recognition mechanism of carboxypeptidase Y, Fmoc-(Glu)n Ala-OH (n = 1 to 6), Fmoc-(Glu)n Ala-NH2 (1 to 5), and Fmoc-Lys(Glu)3Ala-NH2 were synthesized, and kinetic parameters for these substrates were measured. Km for Fmoc-peptides significantly decreased as peptide length increased from n = 1 to n = 5 with only slight changes in kcat. Km for Fmoc-(Glu)(5,6)Ala-OH were almost the same as one for protein substrates described previously (Nakase et al., Bull. Chem. Soc. Jpn., 73, 2587-2590). These results show that the enzyme has six subsites (S1' and S1-S5). Each subsite affinity calculated from the Km revealed subsite properties, and from the differences of subsite affinity between pH 6.5 and 5.0, the residues in each subsite were predicted. For Fmoc-peptide amide substrates, the priorities of amidase and carboxamide peptidase activities were dependent on the substrate. It is likely that the interactions between side chains of peptide and subsites compensate for the lack of P1'-S1' interaction, so the amidase activity prevailed for Fmoc-(Glu)(3,5)Ala-NH2. These results suggest that these subsites contribute extensively to substrate recognition rather than a hydrogen bond network.  相似文献   

15.
The crystal structure of turkey egg-white lysozyme, determined by the molecular replacement method at 5 Å resolution (Bott & Sarma, 1976) has now been refined to 2.8 Å resolution and a model has been built to fit the electron density. A comparison of the co-ordinates with those of hen lysozyme indicate a rootmean-square deviation of 1.6 Å for all the main-chain and side-chain atoms. A significant difference is observed in the region of residues 98 to 115 of the structure. The molecules are packed in this crystal form with the entire length of the active cleft positioned in the vicinity of the crystallographic 6-fold axis and is not blocked by neighboring molecules. A difference electron density map calculated between crystals of turkey lysozyme soaked in a disaccharide of N-acetyl glucosamine—N-acetyl muramic acid and the native crystals showed a strong positive peak at subsite C, a weak positive peak at subsite D and two strong peaks that correspond to the subsite E and a new subsite F′. This new site F′ is different from the subsite F predicted for the sixth saccharide from model building in hen lysozyme. The interactions between the saccharides bound at subsites E and F′ and the enzyme molecules are discussed.  相似文献   

16.
The adsorption apparatus of phage 2 consits of a symmetrical base plate of snowflake appearance, composed of six droplike spikes 7.0 to 7.5 nm in length with a maximum diameter of 4.5 to 5.0 nm. The spikes are attached by their narrow ends to a central ring 7.0 to 7.5 nm in diameter. Phage 2 deopolymerase, a phage 2-induced hydrolytic enzyme, was found to be a structural protein of phage 2 or in close association with the base plate. Pdp1, a phage 2 mutant, possesses a polypeptide that is antigenically similar to the depolymerase, but devoid of hydrolytic activity. This polypeptide was found to be located in the region of the base plate of pdp1. Treatment of intact cells of strain BI with purified phage 2 depolymerase inhibited the adsorption of phage 2. When phage receptor-containing fractions of slime glycolipoprotein and lipopolysaccharide were hydrolyzed by the depolymerase, amino sugars were released, and the phage-inactivating activities of these fractions were lost. The depolymerase was also observed to induce the lysis of strain BI cells in hypotenic medium. The phage 2 depolymerase appears to play a role in adsorption and release of phage.  相似文献   

17.
The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.  相似文献   

18.
Maltohexaose-producing amylase (G6-amylase) from alkalophilic Bacillus sp.707 predominantly produces maltohexaose (G6) in the yield of >30% of the total products from short-chain amylose (DP=17). Our previous crystallographic study showed that G6-amylase has nine subsites, from -6 to +3, and pointed out the importance of the indole moiety of Trp140 in G6 production. G6-amylase has very low levels of hydrolytic activities for oligosaccharides shorter than maltoheptaose. To elucidate the mechanism underlying G6 production, we determined the crystal structures of the G6-amylase complexes with G6 and maltopentaose (G5). In the active site of the G6-amylase/G5 complex, G5 is bound to subsites -6 to -2, while G1 and G6 are found at subsites +2 and -7 to -2, respectively, in the G6-amylase/G6 complex. In both structures, the glucosyl residue located at subsite -6 is stacked to the indole moiety of Trp140 within a distance of 4A. The measurement of the activities of the mutant enzymes when Trp140 was replaced by leucine (W140L) or by tyrosine (W140Y) showed that the G6 production from short-chain amylose by W140L is lower than that by W140Y or wild-type enzyme. The face-to-face short contact between Trp140 and substrate sugars is suggested to regulate the disposition of the glucosyl residue at subsite -6 and to govern product specificity for G6 production.  相似文献   

19.
Reaction patterns for the hydrolysis of chromophoric glycosides from cello-oligosaccharides and lactose by the cellobiohydrolases (CBH I and CBH II) purified from Trichoderma reesei and Penicillium pinophilum were determined. They coincide with those found for the parent unsubstituted sugars. CBH I enzyme from both organisms attacks these substrates in a random manner. Turnover numbers are, however, low and do not increase appreciably as a function of the degree of polymerization of the substrates. The active-site topology of the CBH I from T. reesei was further probed by equilibrium binding experiments with cellobiose, cellotriose, lactose and some of their derivatives. These point to a single interaction site (ABC), spatially restricted as deduced from the apparent independency of the thermodynamic parameters. It appears that the putative subsite A can accommodate a galactopyranosyl or glucopyranosyl group, and subsite B a glucopyranosyl group, whereas in subsite C either a glucopyranosyl or a chromophoric group can be bound, scission occurring between subsites B and C. The apparent kinetic parameters (turnover numbers) for the hydrolysis of cello-oligosaccharides (and their derivatives) by the CBH II type enzyme increase as a function of chain length, indicative of an extended binding site (A-F). Its architecture allows for specific binding of beta-(1----4)-glucopyranosyl groups in subsites A, B and C. Binding of a chromophore in subsite C produces a non-hydrolysable complex. The thermodynamic interaction parameters of some ligands common to both type of enzyme were compared: these substantiate the conclusions reached above.  相似文献   

20.
The affinity labelling of bovine pancreatic ribonuclease A with 6-chloropurine 5' ribonucleotide allowed us to postulate the existence of a new phosphate-binding subsite, P2, adjacent to the main purine-binding subsite. The study of this reaction in greater detail together with the study of a complex of the enzyme with the pentanucleotide pApUpApApG by means of model building and computer graphics indicate that at least five phosphate groups of the RNA molecule can interact with five positive regions of the enzyme. In each one a lysine residue is present: Lys-104, -66, -41, -7 and -37 appear sequentially in the 5'----3' direction. The distance between each lysine is 0.7-0.8 nm, the same distance as that found between the phosphate groups on the RNA molecule. The study also enabled many amino acid residues of the enzyme to be described as forming part of, or being near, the different binding subsites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号