首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Panda M  Ybarra J  Horowitz PM 《Biochemistry》2002,41(42):12843-12849
We investigated the dissociation of single-ring heptameric GroEL (SR1) by high hydrostatic pressure in the range of 1-2.5 kbar. The kinetics of the dissociation of SR1 in the absence and presence of Mg2+, KCl, and nucleotides were monitored using light scattering. The major aim of this investigation was to understand the role of the double-ring structure of GroEL by comparing its dissociation with the dissociation of the single ring. At all the pressures that were studied, SR1 dissociates much faster than the GroEL 14mer. As observed with the GroEL 14mer, SR1 also showed biphasic kinetics and the dissociated monomers do not reassociate readily back to the oligomer. Unlike the GroEL 14mer, the observed rates for SR1 dissociation are independent of the concentrations of Mg2+ and KCl in the studied range. The effects of nucleotides on the observed rates, in the absence or presence of Mg2+ and KCl, are not very significant. The heterogeneity induced in the GroEL molecule with the double-ring structure by ligands such as Mg2+, KCl, and nucleotides is not observed in the case of SR1. This indicates that the inter-ring negative cooperativity in the double-ring GroEL has a major role in this regard. The results presented in this investigation demonstrate that the presence of a second ring in the GroEL 14mer is important for its stability in an environment where the functional ligands of the chaperonin are available.  相似文献   

2.
LDH and GOT can be used with assurance as indicators of pressure-temperature effects in most regions of interest, specifically below 20,000 psi. LDH was susceptible to pressure deactivation at pressure levels below those tolerated by chymotrypsin, trypsin and alpha-amylase of Bacillus subtilis (17, 18, 20). Samples of LDH and GOT cooled to −20 °C were deactivated to the greatest extent by the application of pressure. The presence of glycerine and DMSO appeared to increase the sensitivity of GOT and LDH to pressure deactivation. When pressure was applied before cooling all pressures above 15,000 psi resulted in some deactivation of LDH and all pressures above 20,000 psi resulted in some deactivation of GOT.  相似文献   

3.
Dissociation of yeast hexokinase by hydrostatic pressure   总被引:5,自引:0,他引:5  
K Ruan  G Weber 《Biochemistry》1988,27(9):3295-3301
The pressure-induced dissociation of the isozymes P1 and P2 of hexokinase was investigated by studies of the spectral shift of the intrinsic protein fluorescence and by the fluorescence polarization of dansyl conjugates. The free energy of association of the monomers at atmospheric pressure, Katm, was -14.2 kcal mol-1 at 20 degrees C and -11.4 kcal mol-1 at 0 degrees C. The positive enthalpy indicates that the association of the monomers is entropy-driven, overcoming the negative enthalpy of hydration of the subunit interfaces. At 0 degrees C and 1 bar, glucose stabilizes the association by -1.1 kcal mol-1 and the binding of both adenosine 5'-(beta, gamma-methylenetriphosphate) (AMPPCP) and glucose by an even larger amount, -1.34 kcal mol-1. Paradoxically, adenosine 5'-triphosphate (ATP), or AMPPCP, in the absence of glucose destabilizes the association by +0.34 kcal mol-1, while adenosine 5'-diphosphate (ADP) stabilizes it by -0.6 kcal mol-1. Comparison of dV0, the apparent standard volume of association, at different pHs and temperatures indicates that its value (115-160 mL mol-1) is strongly dependent upon the ionization of a group at the subunit interface with a pK near neutrality. Under dissociating pressures, trypsin action results in permanent dissociation of the dimer, confirming earlier observations of Colowick by less direct methods. The P1 and P2 enzymes differ in Katm and dV0 and markedly so in the effects of salt upon the stability of the dimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
F-actin purified from rabbit skeletal muscle undergoes reversible dissociation when subjected to hydrostatic pressures up to 240 MPa. Dissociation and reversibility were detected by the following procedures: fluorescence spectral changes observed under pressure, when either intrinsic tryptophan or pyrenyl emission of N-(1-pyrenyl)iodoacetamide-labeled actin were monitored; electron microscopy of samples fixed under pressure; size-exclusion HPLC of pressurized actin. The effect of pressure upon F-actin that had been polymerized in the presence of either Mg2+, Ca2+ or K+ was studied. The standard volume changes for the association of actin subunits, calculated from pressure/dissociation curves were 74 +/- 14 ml/mol for Mg-F-actin, 79 +/- 12 ml/mol for Ca-F-actin and 328 +/- 63 ml/mol for K-F-actin, indicating that actin subunits are packed differently in the polymer depending on which cation is present. All pressure/dissociation data could be fitted by a model for dissociation of a dimer, which suggests that in the F-actin filament there is a predominant intersubunit interaction interface, most likely the head-to-tail intrastrand interaction between two subunits which repeats itself along the polymer. A tenfold change in total protein concentration from 20 micrograms to 200 micrograms/ml Mg-F-actin did not cause a change in the pressure required for half-maximal dissociation. This indicates a heterogeneity of free energy of association among actin monomers in the Mg-F-actin polymer, suggesting that, in addition to the predominant intersubunit interaction, the disordered interactions in the filament significantly contribute to the heterogeneity of microenvironments in the interface between the subunits.  相似文献   

5.
C A Royer  G Weber  T J Daly  K S Matthews 《Biochemistry》1986,25(25):8308-8315
Dissociation of lac repressor tetramer by high hydrostatic pressures was monitored with intrinsic tryptophan fluorescence. With the assumption of complete dissociation to monomer, tryptophan polarization data gave delta V a approximately 170 mL/mol and the concentration for 50% tetramer dissociation, C1/2, was 3.8 X 10(-8) M. Upon addition of inducer, the calculated delta V a increased to approximately 220 mL/mol and the C1/2 decreased to approximately 1 X 10(-8) M, a free energy difference of approximately 0.7 kcal. These results indicate a modest stabilization of the tetramer by the presence of inducer. Monitoring the average energy of tryptophan emission demonstrated that tetramer dissociation takes place over the same range of pressures as evidenced by the polarization data and IPTG dissociation can be more or less superimposed upon tetramer dissociation depending upon the ligand concentration used. Although the two transitions cannot be separated entirely, the delta V a for the region of the pressure dependence dominated by ligand dissociation was 69 mL/mol, an unexpectedly large value. For tetramer modified with methyl methanethiosulfonate, subunit dissociation was shifted to much higher pressures and IPTG dissociation did not occur. The delta V a for subunit association was calculated as approximately 160 mL/mol, and the C1/2 was 3.5 X 10(-9) M. Interactions at the subunit interface of the modified protein are apparently stronger than in the unmodified protein. The absence of inducer dissociation from the MMTS-modified tetramer by the application of high hydrostatic pressure suggests that the volume change for inducer binding to the modified protein is much smaller than that observed for the unmodified repressor.  相似文献   

6.
High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm2) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.  相似文献   

7.
The inactivation of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) (GAPDH) during guanidine hydrochloride (GdnHCl) denaturation has been compared with its state of aggregation and unfolding, by light scattering and fluorescence measurements. The enzyme first dissociates at low concentrations of GdnHCl, followed by the formation of a highly aggregated state with increasing denaturant concentrations, and eventually by complete unfolding and dissociation to the monomer at concentrations of greater than 2 M GdnHCl. The aggregation and final dissociation correspond roughly with the two stages of fluorescence changes reported previously (Xie, G.-F. and Tsou, C.-L. (1987) Biochim. Biophys. Acta 911, 19-24). Rate measurements show a very rapid inactivation, the extents of which increase with increasing concentrations of GdnHCl. This initial rapid phase of inactivation which takes place before dissociation and unfolding of the molecule is in agreement with the results obtained with other enzymes, that the active site is affected before noticeable conformational changes can be detected for the enzyme molecule as a whole. A scheme for the steps leading to the final denaturation, and dissociation of the enzyme to the inactive and unfolded monomer, is proposed.  相似文献   

8.
Inactivation of Campylobacter jejuni by high hydrostatic pressure   总被引:1,自引:0,他引:1  
AIMS: To investigate the response of Campylobacter jejuni ATCC 35919 and 35921 to high pressure processing (HPP) while suspended in microbiological media and various food systems. METHODS AND RESULTS: Campylobacter jejuni 35919 and 35921 were subjected to 10-min pressure treatments between 100 and 400 MPa at 25 degrees C suspended in Bolton broth, phosphate buffer (0.2 m, pH 7.3), ultra-high temperature (UHT) whole milk, UHT skim milk, soya milk and chicken pureé. The survivability of C. jejuni was further investigated by inoculated pack studies. HPP at 300-325 MPa for 10 min at 25 degrees C was sufficient to reduce viable numbers of both strains to below detectable levels when cells were pressurized in Bolton broth or phosphate buffer. All food products examined offered a protective effect in that an additional 50-75 MPa was required to achieve similar levels of inactivation when compared with broth and buffer. Inoculated pack studies showed that the survivability of C. jejuni following pressurization improved with decreasing post-treatment storage temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: These data demonstrated that HPP at levels of 相似文献   

9.
10.
11.
Dissociation of purified erythrocyte Ca(2+)-ATPase by hydrostatic pressure.   总被引:2,自引:0,他引:2  
Subunit interactions in the Ca(2+)-ATPase from erythrocyte plasma membranes were investigated through a combination of fluorescence spectroscopy and high-pressure techniques. Application of hydrostatic pressure in the range of 1 bar to 2.4 kbar promoted full dissociation of the ATPase, as revealed by spectral shifts of the intrinsic fluorescence emission and by changes in the fluorescence polarization of dansyl-conjugated ATPase. Pressure dissociation of the ATPase displayed a dependence on protein concentration compatible with dissociation of a dimer. Calculated from pressure-dissociation curves, the standard volume change dV0 for the association of subunits was 43-50 ml/mol and K0, the dissociation constant at atmospheric pressure, was 6-9 x 10(-8) M. Addition of Ca2+ stabilized the dimeric ATPase structure against pressure dissociation, whereas addition of vanadate facilitated dissociation by pressure. These results suggest that intersubunit interactions depend on the equilibrium between the two major conformational states E1 and E2 of the ATPase. Addition of calmodulin in the presence of Ca2+ had no additional effect when compared to that observed in the presence of Ca2+ alone. This finding is interpreted in terms of the mechanism of calmodulin activation of ATPase catalysis.  相似文献   

12.
Porcine muscle lactic dehydrogenase can be reversibly dissociated into monomers at high hydrostatic pressure. The rate of dissociation depends on the conditions of the solvent (Schade et al., 1980, Biochemistry, in press). Maximum yields of reactivation are achieved after dissociation by 20 min incubation in 0.2 M Tris/HCl buffer or 0.2 M KCl at pH 7.6, in the presence of 10 mM dithioerylhritol and 1 mM EDTA, provided that both dissociation and reassociation are performed under anaerobic conditions. At enzyme concentrations of the order of 1 μM reactivation amounts to 9?5%/, the product of reac- tivation being indistinguishable from the enzyme in its initial native state. Based on the long-term stability of the enzyme under the optimum given conditions of reactivation, the kinetics of reconstitution after pressure release were investigated over a wide range of enzyme concentrations (1 nM < c < 1 μM). The weakly sigmoidal kinetics may be described by an irre- versible uni-bimolecular reaction scheme, corresponding to a sequential transconformation-association process. Assuming the protomers to be enzymatically inactive, the kinetic profiles may be fitted by one set of kinetic constants: kuni = 1.5 × 10?2 s?1and kbi = 7 × 103 s?1 M?1, the association step belonging to either dimer or tetramer formation.  相似文献   

13.
The dissociation of free ribosomes at elevated concentrations of KCl is dependent on hydrostatic pressure. The pressure necessary for the dissociation is determined for KCl concentrations ranging from 0.1–0.4 m. It varies between 425 kg cm-2 at 0.1 m and 10 kg cm-2 at 0.4 m. The partial dissociation of complex ribosomes in KCl is dependent on hydrostatic pressure in the same way as the complete dissociation of free ribosomes. Therefore, it is concluded that mRNA and peptidyl-tRNA do not contribute to the stability of the ribosome under these conditions.  相似文献   

14.
The ability of high pressure to dissociate several peripheral protein-membrane complexes was investigated. Three vitamin K-dependent proteins (factor X, protein Z, and prothrombin) dissociated from small unilamellar vesicles (SUVs, 30 nm diameter) composed of 25% phosphatidylserine (PS) and 75% phosphatidylcholine (PC) at comparable pressures (midpoints of 0.3-0.6 kbar). The pressure-induced dissociation curves for the factor X-SUV interaction followed the expected behavior for an interaction with an apparent dissociation equilibrium constant at atmospheric pressure, KD(atm), of 9 x 10(-7) M and a change in volume of association, delta Va, of 88 mL/mol. Factor X also dissociated from large unilamellar vesicles (LUVs, 100 nm diameter, 25% PS:75% PC) with a midpoint of 0.5 kbar. A second group of calcium-dependent membrane-binding proteins included protein kinase C (PKC), a 64-kDa protein, and a 32-kDa protein. The 32-kDa protein dissociated from SUVs (midpoint of 0.8 kbar), whereas PKC and the 64-kDa protein did not dissociate to a significant degree. The differences in dissociability of these proteins appeared to be a result of the differences in their KD(atm)'s (decreased dissociability with decreased KD(atm)). This pattern was further demonstrated by the relatively high midpoint of dissociation (1.1-1.4 kbar) of serum amyloid P component (SAP; KD(atm) ca. 10(-11)) and the limited dissociation of factor Va light chain (KD(atm) ca. 10(-11)). Changing the vesicle composition to phosphatidylethanolamine in place of PC gave higher affinity and decreased dissociation of the 32-kDa protein and SAP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
Using leaderless alkaline phosphatase as a probe, it was demonstrated that pressure treatment induces endogenous intracellular oxidative stress in Escherichia coli MG1655. In stationary-phase cells, this oxidative stress increased with the applied pressure at least up to 400 MPa, which is well beyond the pressure at which the cells started to become inactivated (200 MPa). In exponential-phase cells, in contrast, oxidative stress increased with pressure treatment up to 150 MPa and then decreased again, together with the cell counts. Anaerobic incubation after pressure treatment significantly supported the recovery of MG1655, while mutants with increased intrinsic sensitivity toward oxidative stress (katE, katF, oxyR, sodAB, and soxS) were found to be more pressure sensitive than wild-type MG1655. Furthermore, mild pressure treatment strongly sensitized E. coli toward t-butylhydroperoxide and the superoxide generator plumbagin. Finally, previously described pressure-resistant mutants of E. coli MG1655 displayed enhanced resistance toward plumbagin. In one of these mutants, the induction of endogenous oxidative stress upon high hydrostatic pressure treatment was also investigated and found to be much lower than in MG1655. These results suggest that, at least under some conditions, the inactivation of E. coli by high hydrostatic pressure treatment is the consequence of a suicide mechanism involving the induction of an endogenous oxidative burst.  相似文献   

18.
A novel cuvette was used to subject citrated platelet-rich plasma (PRP) to high hydrostatic pressure with negligible contamination by He (used for compression of the apparatus). Aggregation was induced at pressure by ADP and quantified turbidimetrically. The maximum degree of aggregation (MDA) was reduced from a control level of 82.2 to 53.6% by exposure to 101 ATA. Because decompression bubbles did not form, aggregation was also measured immediately after a compression cycle. After exposure to 101 ATA hydrostatic pressure, platelets responded normally to ADP at 1 ATA. In a matching apparatus, PRP was equilibrated with high partial pressures of inert gases. Normal physiological plasma Po2 and pH were maintained during equilibration. N2O (5 ATA) reduced the MDA from 86.5 (control) to 58.1%. N2 (51 ATA) reduced the MDA from 74.7 (control) to 51.6%, and 101 ATA Pn2 reduced the MDA from 78.0 (control) to 32.3%. He (100 ATA) reduced the MDA from 83.6 to 38.6%. It was concluded that platelet aggregation was relatively sensitive to hydrostatic pressure and less sensitive to inert gases than predicted from their anesthetic potency ratios.  相似文献   

19.
The stabilities of subtilisin and lysozyme under hydrostatic pressures up to 200 MPa were investigated for up to 7 days at 25 degrees C. Methods were chosen to assess changes in tertiary and secondary protein structure as well as aggregation state. Tertiary structure was monitored in situ with second derivative UV spectroscopy and after pressure treatment by dynamic light scattering and second derivative UV spectroscopy. Secondary structure and potential secondary structural changes were characterized by second derivative FTIR spectroscopy. Changes in aggregation state were assessed using dynamic light scattering. Additionally, protein concentration balances were carried out to detect any loss of protein as a function of pressure. For the conditions tested, neither protein shows measurable changes in tertiary or secondary structure or signs of aggregation. Lysozyme concentration balances show no dependence on pressure. Subtilisin concentration balances at high protein concentration (4 mg/mL and higher) do not show pressure dependence. However, the concentration balances carried out at 0.4 mg/mL show a clear sign of pressure dependence. These results may be explained by protein interaction with the vial surface and appear to be rate limited by the equilibrium between active and inactive protein on the surface. Pressure increases protein loss, and the estimated partial molar volume change between the two states is estimated to be -20 +/- 10 mL/mol.  相似文献   

20.
Aggregation of proteins is a serious problem, affecting both industrial production of proteins and human health. Despite recent advances in the theories and experimental techniques available to address understanding of protein aggregation processes, mechanisms of aggregate formation have proved challenging to study. This is in part because the typical irreversibility of protein aggregation processes at atmospheric conditions complicates analysis of their kinetics and thermodynamics. Because high hydrostatic pressures act to disfavor the hydrophobic and electrostatic interactions that cause protein aggregation, studies conducted under high hydrostatic pressures may allow protein aggregates to be formed reversibly, enabling thermodynamic and kinetic parameters to be measured in greater detail. Although application of high hydrostatic pressures to protein aggregation problems is rather recent, a growing literature, reviewed herein, suggests that high pressure may be a useful tool for both understanding protein aggregation and reversing it in industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号