首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activities of three enzymes present in soil, phosphatases, urease, and decarboxylase, were monitered as indicators of the loss of biochemical information occurring when soil was sterilized by dry heat (0.08% relative humidity), gamma radiation, or a combination of both. More enzymatic activity was retained in soil sterilized by a long exposure to dry heat at relatively low temperature (8 weeks at 100.5°C) than by a shorter exposure to a higher temperature (2 weeks at 124.5° C). No enzymatic activity was detectable in soil sterilized by an even higher temperature (4 days at 148.5° C). Soil sterilized with 7.5 Mrads of radiation retained much higher enzymatic activity than with heat sterilization. Combining sublethal doses of heat radiation effectively sterilized the soil and yielded enzymatic activities higher than those of soil sterilized by dry heat alone but lower than those of soil sterilized by radiation.  相似文献   

2.
Summary Candida albicans exhibits greater susceptibility to inactivation by ultraviolet (uv) radiation if grown before or after irradiation at 37° C rather than 25° C. Caffeine, acriflavin or amino acid analogues potentiate inactivation during postirradiation growth at 37° C but have little effect at 25° C. In contrast to inactivation, mutation induction by uv is unaffected by pre- or postirradiation growth temperatures or by metabolic antagonists. These findings are not explicable in terms of possible effects of growth temperatures on known mechanisms for repair of uv damaged DNA. They are consistent, however, with a previous proposal that a temperature dependent mechanism for dark recovery exists in C. albicans which involves synthesis of protein essential for repair of lethal, non-genetic uv damage.  相似文献   

3.
Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.  相似文献   

4.
The effect of soil heat and autoclaving on labile inorganic P (Bray I), microbial P (P-flush) and on phosphatase activity was studied by heating five forest soils in the laboratory, which simulated the effects of heat during bushfires. Top soil was heated to 60 °C, 120 °C and 250 °C or autoclaved for 30 minutes. Soils were analysed immediately after heating and during seven months of incubation to assess immediate and longer-term effects of heating.Labile inorganic P increased immediately after heating and autoclaving soils, with the highest amount recorded for the 250 °C treatment. Phosphorus associated with microbial biomass decreased with heat, and none or small amounts were detected in soils heated to 250 °C and autoclaved, because high temperatures killed the microbial population. Most of the P released from microbes acted as a source of labile inorganic P in soils low in inorganic P, and some of the released P was fixed by the soil. In one soil high in inorganic labile P and with undetectable amounts of microbial-P, the increase in Bray P on heating could only be assigned to solubilisation of other sources of total P Because high temperatures denature enzymatic proteins, phosphatase activity diminished with the increase in temperature, and no activity was detected in 250 °C and autoclaved soils.Phosphorus released by heating decreased during incubation in three of the five soils studied, approaching values observed in unheated soils. Simultaneously, an increase in microbial P was observed in these heated soils, indicating that the partial recovery of microbial biomass acted as a sink for the decrease in Bray-P measured. Phosphatase activity recovered only partially during incubation of heated soils.  相似文献   

5.
Summary The spores of thermophilic actinomycetes were found to be resistant to high temperatures. Spores were more resistant to dry heat than were spores in sucrose solution. The maximum resistance to 100° C in sucrose solution varied from 10 minutes forPseudonocardia thermophila to 4 hours forThermoactinomyces vulgaris.Pseudonocardia thermophila was the most sensitive to dry heat, surviving one-half hour exposure to 100° C, and 3&frac; hours to 90° C. All of the others survived 6 hours of 100° dry heat, exceptThermoactinomyces vulgaris andT. glaucus, both of which survived 15 hours. The other thermophiles tested wereStreptomyces rectus, S. thermoviolaceus subsp.pingens, S. thermovulgaris, andThermomonospora curvata.Contribution No. 342 from the Department of Botany.  相似文献   

6.
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31–42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.Abbreviations and symbols PFD photon flux area density - PSI, PSII photosyntem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - PLM paraheliotropic leaf movement; all data of parameter of variation are mean ± standard error  相似文献   

7.
The influence of high temperatures (dry heat and hot water) on germination of seven Mediterranean Leguminosae species typical of fire-prone ecosystems in southern Spain is analyzed, in order to know the response of seeds to wildfires and the possible implications in their regeneration after this disturbance. Seeds were heated to a range of temperatures (50 °–150 °C) and exposure times (1–60 min) similar to those registered in the upper soil layers during wildfires. Germination tests were carried out in plastic Petri dishes over 60 days. In general, the degree of seed germination promotion by dry heat treatments showed a wide interspecific variation, although the final germination level was increased in all the studied species except for Scorpiurus muricatus. The thermal pretreatment of 50 °C, however, was not effective for germination in any species, and rising the temperature to 70 °C only slightly enhanced the germination in Cytisus patens. The preheatings of 90 °C (5 and 10 min), 120 °C (5 and 10 min), and 150 °C (1 min) were the most effective in promoting seed germination. Hot water (100 °C) scarification also increased the final germination level in all cases, with the exception of C. patens. The germination rates after preheating were much lower than in mechanically scarified seeds and closely resembled those of the untreated seeds, except for C. reverchonii, whose seed germination rate decreased with heat. The response of species to heat shock had no clear relationship with life trait or with the specific post-fire regeneration strategy (obligate seeder or facultative resprouter). Those species coexisting in the same habitats had different heat optimal requirements for seed germination, an strategy suggested by some authors as minimizing interspecific competition in the secondary succession started after fire.  相似文献   

8.
D. S. Coxson 《Oecologia》1987,73(3):447-453
Summary The response of net photosynthesis (NP) and dark respiration to periods of high insolation exposure was examined in the tropical basidiomycete lichen Cora pavonia. Photoinhibition of NP proved quite dependant on temperature. Rates of light saturated NP were severely impaired immediately after pretreatment high light exposure at temperatures of 10, 20 and 40°C, while similar exposure at 30°C resulted in only minimal photoinhibition. Apparent quantum yield proved an even more sensitive indicator of photoinhibition, reduced in all temperature treatments, although inhibition was again greatest at low and high temperatures. Concurrent exposure to reduced O2 tensions during high light exposure mitigated some of the deleterious effects of high light exposure at 10 and 20°C, suggesting an interaction of O2 with the inactivation of photosynthetic function. This represents the first reported instance of light dependant chilling stress in lichens, and may be an important limitation on the distribution of this and other tropical lichen species. This narrow range of temperatures within which thalli of C. pavonia can withstand periods of high insolation exposure coincides with that faced by hydrated thalli during rare periods of high insolation exposure within the cloud/shroud zone on La Soufrière, and points to the necessity of considering periods of atypical or unusual climatic events when interpreting patterns of net photosynthetic response, both in tropical and in north temperate lichen species.  相似文献   

9.
To analyse the potential reaction to firegenerated heat pulses, seeds of 12 species of plants and rhizomes of three species were exposed to elevated temperatures for 10 min. The tested material split into three groups with respect to heat tolerance: (1) the rhizomes, for which the lethal temperatures were in the range 55–59° C; (2) the seeds of most of the species tested, for which the lethal temperatures were in the range 65–75° C; (3) The seeds of two species of Leguminosae and three species of Geranium for which the lethal temperatures were around 100° C. For all three Geranium species and for one of the legume species, Anthyllis vulneraria, exposure temperatures above ca. 45° C resulted in dormancy release, and maximum germination occurred above 60–65° C. Speed of germination was little affected for most species, except after exposure to nearlethal temperatures, where it slowed down dramatically, although the seedlings emerging were healthy. We conclude that due to sharp temperature gradients in the soil during fire, differences in heat tolerance between species in most cases are not large enough to be a decisive factor in their post-fire colonising success. There are exceptions: the seeds of certain taxa that are impermeable to water in the dormant state, some of which have heat triggered germination.  相似文献   

10.
Summary Heat death and resistance adaptation of freshwater crayfish are thought to be properties of its muscle membranes. The inactivation at high temperatures of a membrane-bound enzyme, the Ca++-stimulated ATPase of crayfish abdominal muscle sarcoplasmic reticulum, and the effect of thermal acclimation of crayfish upon the inactivation kinetics have been investigated. In the absence of KCl, the Ca++-stimulated ATPase is irreversibly inactivated with pseudo-first order kinetics at temperatures that cause heat death in the whole animal. 0.1–10.0 mM KCl resulted in slower inactivation, while 100 mM KCl activated the enzyme to 120–180% of its original activity. Enzyme activation by KCl and heat involved a shift in the enzyme concentration/activity curve. Thermal acclimation of crayfish had no significant effect upon the kinetics or Arrhenius activation energy for enzyme inactivation (100.6±10.5 and 92.3±14.6 kcal/mole for preparations from 4°C and 25°C acclimated crayfish).Ca++-stimulated ATPase isolated from heat dead crayfish exhibited normal in vitro activity due presumably to the high intracellular K+ concentration. Nevertheless, the close correspondence between heat death temperatures and inactivation temperatures for several membrane-bound enzymes of muscle is thought to reflect some perturbation of muscle structure that occurs during heat death.Abbreviations ATP Ademosine 5-Triphosphate - EGTA Ethyleneglycol-bis [-amino-ethyl ether] - N N-tetraacetic acid - Hepes N-2-Hydroxyethylpiperazine-N-2-ethanesulphonic acid - FSR Fragmented sarcoplasmic reticulum - Tris Tris (hydroxymethyl)aminomethane  相似文献   

11.
AbdelGadir  A.H.  Alexander  Martin 《Plant and Soil》1997,188(1):93-100
Means were sought to enhance the heat resistance of a strain of Rhizobium leguminosarum biovar phaseoli that died rapidly in soil at 43°C. Bacteria were more resistant to high temperatures in soil than broth or phosphate buffer. Starving the cells in phosphate buffer enhanced their heat resistance. Heat-resistant variants were obtained that grew at 45°C. Resistance of the parent culture to inactivation at 43°C was enhanced by immobilizing the cells in Ca alginate, amending the soil with clay or immobilization of the cells in clays. The bacteria survived better at 40°C in soil receiving montmorillonite-immobilized cells than in montmorillonite-amended soil. These results suggest that the tolerance of rhizobia to high temperatures in soils may be enhanced.  相似文献   

12.
13.
Summary Microwaves have been used to stabilize tissues from the gastrointestinal tract for scanning electron microscopy. The temperature reached is important. Above 55–60°C, epithelial cell sheets begin to lift revealing the underlying basement membrane. These cells may be recovered from the supernatant by micropore filtration or the celloidin sock technique. At higher temperatures, produced either by microwave irradiation or in a water bath, more enterocytes are released. The epithelial cells are larger with increasing temperatures, less with microwaves than with heat alone or in the presence of formaldehyde. At 70°C and above, some proteins are lost and there is false localization of RNA. Some immunoperoxidase reactions are still positive after exposure of the tissue to 60°C. Tissues fixed in boiling formaldehyde retain a surprisingly good morphology.  相似文献   

14.
Summary Three species of the barrel cactus Copiapoa (C. cinerea, C. columna-alba, C. haseltoniana) were investigated in their native habitats along the cool, arid coastal regions of the Atacama Desert in northern Chile. All species orient towards the north with a high degree of precision. Two consequences of adaptive value result from this northerly orientation. First, tissue temperatures of the meristematic and floral regions on the tip of the cactus receive high solar radiation loads which result in high temperatures (30°–40°C) relative to air temperatures (15°–20°) during winter and spring months when adequate soil moisture for growth is available. Second, absorption of solar radiation by the sides of the cactus is minimized, which reduces both the potential detrimental effects of light and heat load on the cactus and probably balances daily quanta absorbed for photosynthesis with nighttime CO2 uptake rates during drought stress periods.  相似文献   

15.
Summary The following is a study of resistance of worker honey bees (Apis mellifica L. var.ligustica) to high temperatures and of the effect of nutrition upon it.Survival of honey bees of spring generation was studied at 45, 50, 55 and 60°C during 15, 30, 45 and 60 minutes exposures. The survival rate was established at the end of their exposure, and 24 hours later. Lethal effects of heat were evident immediately after a 30 minute exposure to 50° C. These effects could be noticed in the survivers 24 hours following exposure.Effect of nutrition on heat resistance at 32° C and at 50° C was studied on one group of bees supplied with a 30 % honey solution; on another- with water only, and on a third group which served as a control (no food). Their survival at 32° C after 12 hours exposure was 100%, 81% and 48%, respectively. However, an exposure duration of 45 minutes at 50°C resulted in a survival of 22% of control bees as compared to a total survival of those fed on honey solution.  相似文献   

16.
The effects of thermal stress were identified in terms of a calf's systemic response. The following physiological parameters were monitored during successive exposure of eight Holstein calves to five temperature levels ranging from 15.5°C to 37.7°C at 60% RH: stroke volume, heart rate, arterial systolic and diastolic pressures, plasma cortisol and thyroxine levels, and internal and skin temperatures. Results indicated that 3 to 4- week-old male calves respond to acute heat stress only above 32.2°C at 60% RH and do not demonstrate a marked attempt to acclimate until at least four to five hours of exposure at 37.7°C.  相似文献   

17.
The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae) is a widespread pest that lives in, and feeds on, wheat flour. Here, we studied the effects of low-intensity microwave radiation (LIMR; ≤2.0 kW/kg) on physiological and biochemical characteristics of T. castaneum, and compared them to the effects of heat conduction treatment, to provide a theoretical basis for using LIMR for pest control. Lethal model equations with respect to temperature were shown to provide acceptable fitting accuracy for the effects of LIMR treatment. Semi-lethal and lethal temperatures induced through LIMR (48 °C and 50 °C, respectively) for T. castaneum were lower than those induced through heat conduction (50 °C and 52 °C). When T. castaneum were subjected to LIMR, the insects’ moisture content, pH values, alkaline phosphatase and acetyl cholinesterase activity were all lower than when the insects were subjected to heat conduction. Peroxide values and total free amino acid content were higher, and protein subunits molecular weights were lower when T. castaneum were exposed to LIMR than to heat; moreover, after LIMR exposure, the amino acid composition of T. castaneum was changed and the insect's DNA was damaged.  相似文献   

18.
The inactivation of Salmonella enterica serovar Enteritidis by ultrasonic waves (20 kHz; 117-μm wavelength) under pressure (175 kPa) at nonlethal temperatures (manosonication [MS]) and lethal temperatures (manothermosonication [MTS]) in media of different water activities has been investigated. Heat decimal reduction time values increased 30 times when the water activity was decreased from nearly 1 to 0.96, but the MS resistance was increased only twofold. The inactivation of Salmonella serovar Enteritidis by ultrasound under pressure at low water activities was a phenomenon of the “all-or-nothing” type. A synergistic lethal effect was observed between heat and ultrasound in media with reduced water activity; the lower the water activity, the greater the synergistic effect. This work could be useful for improving sanitation and preservation treatments of foods, especially those which are sensitive to temperature and those in which components protect microorganisms to heat. It also contributes to our knowledge of microbial inactivation mechanisms by MS and MTS treatments.  相似文献   

19.
Summary The effects of a non-ionic surfactant, Pluronic F-68, on growth of microbial cell cultures have been studied. Growth ofSaccharomyces cerevisiae at 30°C or 37°C as measured by viable cell counts was unaffected by culture with pluronic. However, corresponding absorbance measurements forS. cerevisiae incubated with 5–10% pluronic were lower than controls at both temperatures. Absorbance ofE. coli cultures was also significantly reduced by incubation with 5.0–10.0% pluronic at both temperatures although viable counts again revealed no significant inhibition of growth.  相似文献   

20.
Other than the hominin lineage, baboons are the diurnally active primates that have colonized the arid plains of Africa most successfully. While the hominin lineage adopted bipedalism before colonizing the open, dry plains, baboons retained a quadrupedal mode of locomotion. Because bipedalism has been considered to reduce the thermoregulatory stress of inhabiting open dry plains, we investigated how baboons cope with thermal loads and water restriction. Using implanted data loggers, we measured abdominal temperature every 5 min in six unrestrained baboons while they were exposed to simulated desert conditions (15 °C at night rising to 35 °C during the day, with and without extra radiant heating), or an ambient temperature of 22 °C. At 22 °C, core temperature averaged 37.9 °C and cycled nychthemerally by 1.7 °C. Mean, minimum, and maximum daily core temperatures in euhydrated baboons in the simulated desert environments did not differ from the temperatures displayed in the 22 °C environment, even when radiant heating was applied. At 22 °C, restricting water intake did not affect core temperature. During the desert simulations, maximum core temperature increased significantly on each day of water deprivation, with the highest temperatures (>40 °C) on the third day in the simulation that included radiant heat. When drinking water heated to 38 °C was returned, core temperature decreased rapidly to a level lower than normal for that time of day. We conclude that baboons with access to water can maintain homeothermy in the face of high air temperatures and radiant heat loads, but that a lack of access to drinking water poses a major threat to baboon homeothermy. We speculate that any competitive thermoregulatory advantage of bipedalism in early hominins was related to coping with water shortage in hot environments, and that their freed hands might have enabled them to transport enough water to avoid dangerous hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号