首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The amplified CAD genes in N-(phosphonacetyl)-L-aspartate (PALA)-resistant Syrian hamster cells are located in an expanded chromosomal region emanating from the site of the wild-type gene at the tip of the short arm of chromosome B-9. The terminus of B-9 in PALA-sensitive cells contains a cluster of rRNA genes (i.e., a nucleolus organizer, rDNA). We have used a molecular clone containing sequences complementary to Syrian hamster 28S rRNA to investigate whether rDNA is coamplified with CAD genes in the PALA-resistant mutants. In situ hybridization of this probe to metaphase chromosomes demonstrates that rDNA and CAD genes do coamplify in two independently isolated PALA-resistant mutants. The tight linkage of CAD and rDNA genes was demonstrated by their coordinate translocation from B-9 to the end of the long arm of chromosome C-11 in one mutant. Blot hybridization studies substantiate the in situ hybridization results. Both types of analysis indicate that only one or two rDNA genes, on the average, are coamplified per CAD gene. The data are consistent with the model that unequal exchanges between rDNA genes mediate the amplification of CAD genes in the Syrian hamster mutants that were analyzed.  相似文献   

2.
Eleven independent lines of Syrian hamster cells were selected by using very low levels of N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartate transcarbamylase. The protocol employed insured that each resistant cell arose during one of the last divisions before selection was applied. Cells of each mutant line contained an amplification of the structural gene for CAD, a trifunctional protein which includes aspartate transcarbamylase and two other enzymes of UMP biosynthesis. Strikingly, despite the minimal selection employed, the degree of amplification of the CAD gene was 6 to 10 times the normal diploid number in all 11 cases. In situ hybridization indicated that the amplified CAD genes were almost always present at a single chromosomal site in each line. Therefore, one of the two alleles was amplified 11- to 19-fold. The rates at which cells became resistant to PALA, determined by fluctuation analysis, were 100 times less dependent on drug concentration than were the frequencies of resistant cells in steady-state populations. The relatively shallow dependence of this rate upon PALA concentration is consistent with our independent observation that most events gave rise to a similar degree of amplification. In six of six cell lines examined, the levels of CAD mRNA and aspartate transcarbamylase activity were elevated two- to fourfold. These lines were resistant to PALA concentrations 20- to 80-fold higher than the ones used for selection. The organization of amplified DNA was examined by hybridizing Southern blots with cloned DNA fragments containing amplified sequences, previously isolated from two cell lines resistant to high levels of PALA. A contiguous region of DNA approximately 44 kilobases long which included the CAD gene was amplified in five of five single-step mutants examined. Outside this region, these mutants shared amplified sequences with only one of the two highly resistant lines.  相似文献   

3.
Syrian hamster cell lines selected in multiple steps for resistance to high levels of N-(phosphonacetyl)-L-aspartate (PALA) contain many copies of the gene coding for the pyrimidine pathway enzyme CAD. Approximately 500 kilobases of additional DNA was coamplified with each copy of the CAD gene in several cell lines. To investigate its structure and organization, we cloned ca. 162 kilobases of coamplified DNA from cell line 165-28 and ca. 68 kilobases from cell line B5-4, using a screening method based solely on the greater abundance of amplified sequences in the resistant cells. Individual cloned fragments were then used to probe Southern transfers of genomic DNA from 12 different PALA-resistant mutants and the wild-type parents. A contiguous region of DNA ca. 44 kilobases long which included the CAD gene was amplified in all 12 mutants. However, the fragments cloned from 165-28 which were external to this region were not amplified in any other mutant, and the external fragments cloned from B5-4 were not amplified in two of the mutants. These results suggest that movement or major rearrangement of DNA may have accompanied some of the amplification events. We also found that different fragments were amplified to different degrees within a single mutant cell line. We conclude that the amplified DNA was not comprised of identical, tandemly arranged units. Its structure was much more complex and was different in different mutants. Several restriction fragments containing amplified sequences were found only in the DNA of the mutant cell line from which they were isolated and were not detected in DNA from wild-type cells or from any other mutant cells. These fragments contained novel joints created by rearrangement of the DNA during amplification. The cloned novel fragments hybridized only to normal fragments in every cell line examined, except for the line from which each novel fragment was isolated or the parental population for that line. This result argues that "hot spots" for forming novel joints are rare or nonexistent.  相似文献   

4.
5.
Two adjacent fragments of genomic DNA spanning the gene for CAD, which encodes the first three enzymes of UMP biosynthesis, were cloned from a mutant Syrian hamster cell line containing multiple copies of this gene. The mutant was selected for resistance to N-(phosphonacetyl)-L-aspartate, a potent and specific inhibitor of aspartate transcarbamylase, the second enzyme in the pathway. The sizes and positions of about 37 intervening sequences within the 25-kilobase CAD gene were mapped by electron microscopy, and the locations of the 5' and 3' ends of the 7.9-kilobase CAD mRNA were established by electron microscopy and by other hybridization methods. The coding sequences are small (100 to 400 bases), as are most of the intervening sequences (50 to 300 bases). However, there are also several large intervening sequences of up to 5,000 bases each. Two small cytoplasmic polyadenylated RNAs are transcribed from a region just beyond the 5' end of the CAD gene, and their abundance reflects the degree of gene amplification.  相似文献   

6.
The levels of UMP synthase protein and mRNA are increased in rat hepatoma cells that have acquired resistance to pyrazofurin, a potent inhibitor of pyrimidine biosynthesis. A cDNA plasmid library was prepared from partially purified poly(A)+ mRNA isolated from the resistant cell line. Recombinant plasmids with inserts complementary to UMP synthase mRNA were selected by differential hybridization with cDNA prepared from wild type and resistant cell mRNA and analysis of hybrid-selected mRNA by in vitro translation reactions. One plasmid, pUMPS-2, contains a 850-base pair insert and was used to analyze UMP synthase gene sequences in the wild type and resistant cell lines. Blot hybridization of restricted genomic DNA demonstrated amplification of the UMP synthase gene in the resistant cells. The number of UMP synthase genes is increased 15-fold as determined by a modified dot hybridization procedure. Previous studies have shown that the resistant cells have a 16-fold increase in UMP synthase mRNA but a 40-fold increase in synthase activity (Suttle, D.P. (1983) J. Biol. Chem. 258, 7707-7713). To further investigate this discrepancy between the amount of increase in DNA and mRNA versus the increase in enzyme activity, we have determined the relative rate of synthesis and degradation of UMP synthase. The rate of synthesis was 13-fold faster in the resistant cells. The degradation rate was not significantly different between the two cell lines. These data indicate that gene amplification is the major factor contributing to the enzyme overproduction in the pyrazofurin-resistant cells.  相似文献   

7.
8.
In an X-ray diffraction study using the method of multiple isomorphous replacement, the structure of aspartate carbamoyltransferase (EC 2.1.3.2) complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) has been solved to 2.5 A. Ten rounds of model building and 123 cycles of restrained reciprocal space refinement have resulted in a model containing 94.4% of the theoretical atoms of the protein-inhibitor complex with an R-factor of 0.231. The fit of the model to the density is excellent, except for occasional side-chains and two sections of the regulatory chains that may be disordered. The electron density for the PALA molecule is readily identifiable for both catalytic (c) chains of the asymmetric unit and bonding interactions with several important residues including Ser52, Arg54, Thr55, Ser80, Lys84, Arg105, His134, Arg165, Arg229 and Gln231 are apparent. The carboxylate groups of the PALA molecule are in a nearly cis conformation. Gross quaternary changes between the T and R forms are noted and in agreement with earlier work from this laboratory. Namely, in the new structure the catalytic trimers move apart by 12 A along the 3-fold axis of the enzyme and relocate by 10 degrees relative to each other, adopting a more eclipsed position. The regulatory (r) chains in the new structure reorient about their 2-fold axis by 15 degrees. Large tertiary changes that include domain migration and rearrangement are also present between these two forms. In the R form both domains of the catalytic chain relocate closer to each other in order to bind to the inhibitor. The polar domain seems to bind primarily to the carbamoyl phosphate moiety of PALA, and the equatorial domain binds primarily to the L-aspartate moiety. Other changes in tertiary structure bring the 80s loop (from an adjacent catalytic chain) and the 240s loop into a position to interact with the PALA molecule. Changes have been searched for in all interface regions of the enzyme. While the C1-C4 and C1-R4 regions have been completely altered, most of the other interchain interfaces are similar in the T and R forms. The intrachain interfaces, between domains of the same catalytic chains, have undergone some reorganization as these domains move closer to each other when the inhibitor is bound. This new structure allows a reinterpretation of genetic and chemical modification studies done to date.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Deletion and amplification of the HGPRT locus in Chinese hamster cells.   总被引:37,自引:13,他引:24       下载免费PDF全文
Somatic cell selective techniques and hybridization analyses with a cloned cDNA probe were used to isolate and identify Chinese hamster cell lines in which the X-linked gene for hypoxanthine-guanine phosphoribosyltransferase (HGPRT) has been altered. Two of 19 HGPRT-deficient mutants selected were found to have major DNA deletions affecting the HGPRT locus. Cytogenetic studies revealed that the X chromosome of each deletion mutant had undergone a translocation event, whereas those from the remaining 17 mutants were normal. Phenotypic revertants of the thermosensitive HGPRT mutant RJK526 were isolated, and amplification of the mutant allele was shown to be the predominant mechanism of reversion. Comparisons of restriction enzyme fragments of DNA from deletion versus amplification strains identified two regions of the Chinese hamster genome that contained homology to the cDNA probe. One was shown to be much larger than the 1,600-nucleotide mRNA for HGPRT and to be comprised of linked fragments that contained the functional HGPRT gene. The second was neither transcribed nor tightly linked to the functional gene. These initial studies of HGPRT alterations at the level of DNA thus identified molecular mechanisms of phenotypic variation.  相似文献   

10.
11.
12.
Spontaneous phenotypic revertants of hypoxanthine phosphoribosyl-transferase (HPRT) temperature-sensitive V79 Chinese hamster cells were selected by plating a temperature-sensitive mutant in HAT medium at 39 degrees C. The incidence of such revertants was approximately 2 X 10(-4) per cell. The majority of the revertants examined had increases of between three- and tenfold in their specific activity of the enzyme, and they were able to grow continuously in the presence of HAT medium at 39 degrees C. When the revertants were cultivated in the absence of HAT, they recovered their HAT-sensitive phenotype and their lowered level of HPRT. Three of the revertants were examined for their temperature inactivation profiles, and all were found to have profiles identical to the ts parent, and quite different from the V79 wild type. The kinetic properties of the cell lines were studied: the Km for both PRPP and hypoxanthine was significantly different in the temperature-sensitive cells but was not significantly altered in the revertants with respect to the ts mutants. A specific antibody to Chinese hamster brain HPRT was employed in immunoprecipitation experiments. By measuring the point at which the immunoprecipitation of the antibody to HPRT was overcome by increasing concentrations of cell supernatant, it was possible to estimate the relative amount of enzyme molecules in the cell lines. From these data, it could be concluded that the revertants overproduced an enzyme with the same immunological properties as the ts line. Southern blots of the Hind III restricted DNA from the ts mutant and two revertant cell lines were examined with an HPRT cDNA probe. This established that the HPRT gene was amplified twofold in one of the revertants, and threefold in the other. However, if the revertants were reintroduced into nonselective medium, the gene copy number declined to one. Finally, northern blots of RNA extracted from the various cell lines demonstrated that the HPRT mRNA was augmented 1.5-fold in one revertant and 1.4-fold in the other. Reintroduction into non-selective medium resulted in a decline in mRNA level for the second mutant, whereas the first mutant appeared to be stabilized. We conclude that gene amplification and concomitant amplification of messenger RNA and enzyme levels are mechanisms of phenotypic reversion at the HPRT locus in Chinese hamster cells.  相似文献   

13.
The amino acid analog albizziin was used to isolate Chinese hamster ovary cell lines which overproduce asparagine synthetase. Mutants selected in a single step after ethyl methane sulfonate mutagenesis were approximately 10-fold more resistant to the drug than the parental lines and expressed 8- to 17-fold elevations in enzyme activity. The karyotypes of these lines show alterations such as breaks and translocations affecting the long arm of chromosome 1. Cell lines isolated in several steps by growth in progressively increasing concentrations of albizziin were more resistant to the drug and exhibited up to 300-fold enhancement of asparagine synthetase activity. The multistep albizziin-resistant cell lines usually had expanded chromosomal regions which stained somewhat homogeneously, often on the long arm of chromosome 1. These results suggest that resistance to albizziin in the multistep lines may be due to gene amplification.  相似文献   

14.
Nuclear magnetic resonance has been used to study the binding of [13C]carbamyl-P (90% enriched) to the catalytic subunit of Escherichia coli aspartate transcarbamylase. Upon forming a binary complex, there is a small change in the chemical shift of the carbonyl carbon resonance, 2 Hz upfield at pH 7.0, indicating that the environments of the carbonyl group in the active site and in water are similar. When succinate, an analog of L-aspartate, is added to form a ternary complex, there is a large downfield change in the chemical shift for carbamyl-P, consistent with interaction between the carbonyl group and a proton donor of the enzyme. The change might also be caused by a ring current froma nearby aromatic amino acid residue. From the pH dependence of this downfield change and from the effects of L-aspartate analogs other than succinate, the form of the enzyme involved is proposed to be an isomerized ternary complex, previously observed in temperature jump and proton NMR studies. The downfield change to chemical shift for carbamyl-P bound to the isomerized complex is 17.7 +/- 1.0 Hz. Using this value, the relative ability of other four-carbon dicarboxylic acids to form isomerized ternary complexes with the enzyme and carbamyl-P has been evaluated quantitatively. The 13C peak for the transition state analog N-(phosphonacetyl)-L-aspartate (PALA), 90% enriched specifically at the amide carbonyl group, is shifted 20 Hz downfield of the peak for free PALA upon binding to the catalytic subunit at pH 7.0. In contrast, the peak for [1-13C] phosphonaceatmide shifts upfield by about 6 Hz upon binding. Since PALA induces isomerization of the enzyme and phosphonacetamide does not, these data provide further evidence consistent with protonation of the carbonyl group only upon isomerization. The degrees of protonation is strong acids of the carbonyl groups of PALA, phosphonacetamide and urethan (a model for the labile carbamyl-P) have been determined, as have the chemical shifts for these compounds upon full protonation. From these data it is calculated that the amide carbonyl groups of carbamyl-P and PALA might be protonated to a maximum of about 20% in the isomerized complexes at pH 7.0. The change in conformation of the enzyme-carbamyl-P complex upon binding L-aspartate, previously proposed to aid catalysis by compressing the two substrates together in the active site, may be accompanied by polarization of the C=O bond, making this ordinarily unreactive group a much better electrophile. A keto analog of PALA, 4,5-dicarboxy-2-ketopentyl phosphonate, also binds tightly to the catalytic subunit and induces a very similar conformational change, whereas an alcohol analog, 4,5-dicarboxy-2-hydroxypentyl phosphonate, does not bind tightly, indicating the critical importance of an unhindered carbonyl group with trigonal geometry.  相似文献   

15.
Exposure of V79 Chinese hamster cells to 2-chlorobenzylidene malonitrile (CS), a chemical used as a sensory irritant for riot control, caused a concentration-dependent increase in the incidence of spindle disturbances. A C-mitotic effect with the appearance of C-metaphases, a metaphase block and the concomitant disappearance of ana-telophase figures were observed after a 3-h treatment. The results indicate that CS might induce aneuploidy in mammalian cells by interacting with the mitotic apparatus.  相似文献   

16.
17.
Drosophila cells were treated in vitro with N-phosphonacetyl-L-aspartate (PALA) which is a specific inhibitor of aspartate transcarbamylase, the second enzyme of the pyrimidine biosynthetic pathway. By stepwise selection using increasing amounts of this inhibitor, PALA-resistant (PALAr) stable clones have been isolated. Enzymatic activities of aspartate transcarbamylase, carbamyl phosphate synthetase and dihydro-orotase, borne by the same multifunctional protein, CAD, are increased 6-12-fold in these resistant clones compared with parental cells. The aspartate transcarbamylase in PALAr cells is shown by physical, kinetic and immunological criteria to be normal. The data from immunotitration and immunoblotting experiments indicate that the increased enzyme activities result from the overproduction of CAD.  相似文献   

18.
Most investigations of the allosteric properties of the regulatory enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli are based on the sigmoidal dependence of enzyme activity on substrate concentration and the effects of the inhibitor, CTP, and the activator, ATP, on the saturation curves. Interpretations of these effects in terms of molecular models are complicated by the inability to distinguish between changes in substrate binding and catalytic turnover accompanying the allosteric transition. In an effort to eliminate this ambiguity, the binding of the 3H-labeled bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) to aspartate transcarbamoylase in the absence and presence of the allosteric effectors ATP and CTP has been measured directly by equilibrium dialysis at pH 7 in phosphate buffer. PALA binds with marked cooperativity to the holoenzyme with an average dissociation constant of 110 nM. ATP and CTP alter both the average affinity of ATCase for PALA and the degree of cooperativity in the binding process in a manner analogous to their effects on the kinetic properties of the enzyme; the average dissociation constant of PALA decreases to 65 nM in the presence of ATP and increases to 266 nM in the presence of CTP while the Hill coefficient, which is 1.95 in the absence of effectors, becomes 1.35 and 2.27 in the presence of ATP and CTP, respectively. The isolated catalytic subunit of ATCase, which lacks the cooperative kinetic properties of the holoenzyme, exhibits only a very slight degree of cooperativity in binding PALA. The dissociation constant of PALA from the catalytic subunit is 95 nM. Interpretation of these results in terms of a thermodynamic scheme linking PALA binding to the assembly of ATCase from catalytic and regulatory subunits demonstrates that saturation of the enzyme with PALA shifts the equilibrium between holoenzyme and subunits slightly toward dissociation. Ligation of the regulatory subunits by either of the allosteric effectors leads to a change in the effect of PALA on the association-dissociation equilibrium.  相似文献   

19.
The binding of the bisubstrate ligand N-(phosphonacetyl)-L-aspartate (PALA) to the active sites of both the free catalytic subunit of aspartate transcarbamoylase and the intact holoenzyme causes conformational changes which have been studied extensively. However, no kinetic information has been available about the sequence of events occurring during the formation or dissociation of the complexes. Stopped flow kinetics, 31P saturation transfer NMR spectroscopy, and presteady-state kinetics were used to monitor the interaction of PALA with the catalytic subunit (or a derivative containing nitrotyrosyl chromophores which served as spectral probes). The various experimental approaches lead to a mechanism that includes a rapid binding of PALA with an "on" rate of about 10(8)M-1s-1 and an "off" rate of 28 s-1, followed by a much slower isomerization of the complex with a forward rate constant of 0.18 s-1. Analysis of the presteady-state bursts of enzyme activity when the protein is added to a mixture of substrates and PALA and of the lag in activity when the PALA complex with catalytic subunit is added to substrates yielded a rate constant for the reverse isomerization of 0.018s-1. Thus, the conformational change subsequent to PALA binding leads to a 10-fold increase in the equilibrium constant for complex formation. Stopped flow kinetic measurements of the spectral change resulting from mixing the complex of PALA and nitrated protein with native enzyme showed a slow process with a t1/2 of about 11 s, whereas 31P saturation transfer NMR experiments yielded at t1/2 of about 260 ms for the dissociation of PALA from the complex. This apparent disparity is understood in terms of the two-step binding scheme where rapid dissociation of the initial ligand X enzyme complex is measured by the NMR technique and the slow isomerization of the complex is responsible for the bulk of the stopped flow signal.  相似文献   

20.
Restriction digests of genomic DNA from tunicamycin-resistant Chinese hamster ovary cells, 3E11, were probed with the yeast transferase gene, ALG7. The data presented suggest moderate amplification of the N-acetylglucosaminyl-1-phosphate transferase gene occurred in these cells, consistent with the previously observed chromosomal translocations and increased enzymatic activity. This is the first example of gene amplification as a mechanism for aberrations in N-linked glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号