首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monosialoganglioside (GM1) is a glycosphingolipid present in most cell membranes that displays antioxidant and neuroprotective properties. It has been recently described that GM1 induces vasodilation. However, the mechanisms underlying GM1-induced vasodilation were not evaluated to date. Therefore, in this study we investigated whether the nonspecific NOS inhibitor l-NAME prevents GM1-induced vasodilation in rats. The systemic injection of GM1 (50 mg/kg, i.p.) increased the outer diameter of pial vessels by 50% in anesthetized animals at 30 min, and this effect was fully prevented by the administration of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 60 mg/kg, i.p. 15 min before GM1 injection).A 30 min exposure of cerebral cortex slices to GM1 (100 μM) increased the content of nitrite plus nitrate (NOx) by 50%. Addition of l-NAME (100 μM) to the incubation medium fully prevented GM1-induced NOx increase. Conversely, a 60 min exposure of slices to GM1 (100 μM) decreased NOx content, revealing a biphasic effect of GM1. Our results suggest that NO plays an important role in the vasodilation induced by GM1.  相似文献   

2.
Monosialoganglioside (GM1) is a glycosphingolipid present in most cell membranes that displays antioxidant and neuroprotective properties. GM1 increases catalase activity in cerebral cortices in vivo, but the mechanisms underlying this effect of GM1 are not known. In the current study we investigated the effect of GM1 (50 mg/kg, ip) on the content of hemoglobin and catalase activity of hippocampus, cortex, and striatum of rats. GM1 administration increased catalase activity and hemoglobin content in brain samples after 30 min, but had no effect on blood catalase activity. GM1-induced increase in catalase activity was abolished by brain perfusion with heparinized saline. Brain catalase activity in the absence of blood, estimated by regression analysis of data from perfused and nonperfused animals, was not altered by the systemic injection of GM1. Moreover, the addition of GM1 (30 or 100 microM) did not increase catalase activity in slices of cerebral cortex in situ, further suggesting that blood circulation is required for this effect. The GM1-induced vasodilation was confirmed in vivo, because the systemic injection of GM1 (50 mg/kg, ip) increased (1.2-1.6 times) the width of pial vessels.  相似文献   

3.
The microvascular function of nitric oxide (NO) during ischemia-reperfusion (I/R) in intermittent hypoxia (IH)-pretreated hamsters was analyzed using 20 mg/kg of the nonselective NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) and 5 mg/kg of the preferential inducible NO inhibitor S-methylisothiourea sulphate (SMT) injected before I/R. Studies were made in the hamster cheek pouch microcirculation (intravital fluorescence microscopy). IH consisted of 6 min of 8% O(2) breathing followed by 6 min of 21% O(2) for every 8 h for 21 days. Normoxia controls (NCs) were exposed to room air for the same period. The effects were characterized in terms of systemic hemodynamics, diameter, flow, wall shear stress in arterioles, capillary perfusion, and the concentrations of thiobarbituric acid-reactive substances (TBARS) and plasma NO, assessed as nitrite/nitrate (NOx) levels. IH did not change arterial blood pressure and increased hematocrit and shear stress. IH increased NOx and TBARS levels and reduced arterial diameter, blood flow, and capillary perfusion versus the NC. Conversely, TBARS and NOx were lower during I/R in IH-pretreated hamsters, resulting in vasodilation and the increase of capillary perfusion and shear stress. After IH, capillary perfusion was reduced by 24% (2.3%) and enhanced by 115% (1.7%) after I/R (P < 0.05). Both modalities of NO blockade decreased NOx generation and increased TBARS versus IH. l-NAME and SMT induced a significant decrease in arteriolar diameter, blood flow, and capillary perfusion (P < 0.05). l-NAME enhanced TBARS more than SMT and aggravated I/R damage. In conclusion, we demonstrated that preconditioning with IH greatly reduces oxidative stress and stimulates NO-induced vasodilation during I/R injury, thus maintaining capillary perfusion.  相似文献   

4.
Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P < 0.05). After the heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after substantial cutaneous vasodilation.  相似文献   

5.
We tested the hypothesis that tumor necrosis factor-alpha (TNF-alpha) increases pulmonary vasoconstriction by decreases in nitric oxide- (NO) dependent vasodilation. Lungs were isolated from guinea pigs 18 h after intraperitoneal injection of either TNF-alpha (1.60 x 10(5) U/kg) or control. U-46619 (365 mM/min) caused increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. TNF-alpha augmented the U-46619-induced increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. Methylene blue (1 microM), which inhibits the activation of soluble guanylate cyclase by NO, had an effect similar to TNF-alpha on the pulmonary response to U-46619 alone but was not additive to the effect of TNF-alpha. NG-monomethyl-L-arginine (270 microM), an inhibitor of NO generation, also enhanced the response to U-46619. Lung effluent levels of nitrite, the oxidation product of NO, were reduced after treatment with either TNF-alpha or NG-monomethyl-L-arginine compared with U-46619 alone. In addition, lungs isolated after TNF-alpha treatment showed decreased vasodilation in response to acetylcholine (10(-8)-10(-5) M) compared with control; however, vasodilation in response to L-arginine (10 mM) and nitroprusside (10(-6.3) and 10(-6) M), agents that promote NO release, was not decreased in TNF-alpha-treated lungs. The data indicate that TNF-alpha induces an increase in vascular constriction in response to U-46619 and a decrease in vasodilation in response to acetylcholine. The mechanism for the TNF-alpha-induced alteration in pulmonary vascular reactivity may be decreased generation of NO.  相似文献   

6.
The aim of this study was to examine the role of nitric oxide (NO) in the control of cardiac metabolism at 60 days of pregnancy (P60) in the dog. There was a basal increase in diastolic coronary blood flow during pregnancy and a statistically significant increase in cardiac output (55 +/- 4%) and in cardiac NOx production (44 +/- 4 to 59 +/- 3 nmol/min, P < 0.05). Immunohistochemistry of the left ventricle showed an increase in endothelial nitric oxide synthase staining in the endothelial cells at P60. NO-dependent coronary vasodilation (Bezold-Jarisch reflex) was increased by 20% and blocked by N(G)-nitro-l-arginine methyl ester (l-NAME). Isotopically labeled substrates were infused to measure oleate, glucose uptake, and oxidation. Glucose oxidation was not significantly different in P60 hearts (5.4 +/- 0.5 vs. 6.2 +/- 0.4 micromol/min) but greatly increased in response to l-NAME injection (to 19.9 +/- 0.9 micromol/min, P < 0.05). Free fatty acid (FFA) oxidation was increased in P60 (from 5.3 +/- 0.6 to 10.4 +/- 0.5 micromol/min, P < 0.05) and decreased in response to l-NAME (to 4.5 +/- 0.5 micromol/min, P < 0.05). There was an increased oxidation of FFA for ATP production but no change in the respiratory quotient during pregnancy. Genes associated with glucose and glycogen metabolism were downregulated, whereas genes involved in FFA oxidation were elevated. The acute inhibition of NO shifts the heart away from FFA and toward glucose metabolism despite the downregulation of the carbohydrate oxidative pathway. The increase in endothelium-derived NO during pregnancy results in a tonic inhibition of glucose oxidation and reliance on FFA uptake and oxidation to support ATP synthesis in conjunction with upregulation of FFA metabolic enzymes.  相似文献   

7.
We tested the hypothesis that nitric oxide (NO) inhibits endothelium-derived hyperpolarizing factor (EDHF)-induced vasodilation via a negative feedback pathway in the coronary microcirculation. Coronary microvascular diameters were measured using stroboscopic fluorescence microangiography. Bradykinin (BK)-induced dilation was mediated by EDHF, when NO and prostaglandin syntheses were inhibited, or by NO when EDHF and prostaglandin syntheses were blocked. Specifically, BK (20, 50, and 100 ng. kg(-1). min(-1) ic) caused dose-dependent vasodilation similarly before and after administration of N(G)-monomethyl-L-arginine (L-NMMA) (3 micromol/min ic for 10 min) and indomethacin (Indo, 10 mg/kg iv). The residual dilation to BK with L-NMMA and Indo was completely abolished by suffusion of miconazole or an isosmotic buffer containing high KCl (60 mM), suggesting that this arteriolar vasodilation is mediated by the cytochrome P-450 derivative EDHF. BK-induced dilation was reduced by 39% after inhibition of EDHF and prostaglandin synthesis, and dilation was further inhibited by combined blockade with L-NMMA to a 74% reduction in the response. This suggests an involvement for NO in the vasodilation. After dilation to BK was assessed with L-NMMA and Indo, sodium nitroprusside (SNP, 1-3 microgram. kg(-1). min(-1) ic), an exogenous NO donor, was administered in a dose to increase the diameter to the original control value. Dilation to BK was virtually abolished when administered concomitantly with SNP during L-NMMA and Indo (P < 0.01 vs. before SNP), suggesting that NO inhibits EDHF-induced dilation. SNP did not affect adenosine- or papaverine-induced arteriolar dilation in the presence of L-NMMA and Indo, demonstrating that the effect of SNP was not nonspecific. In conclusion, our data are the first in vivo evidence to suggest that NO inhibits the production and/or action of EDHF in the coronary microcirculation.  相似文献   

8.
BACKGROUND--AIMS:The mechanisms of somatostatin-mediated gastroprotection are not fully understood. Aims of this study were to determine in the rat the role of nitric oxide (NO) in somatostatin-induced effects on gastric mucosal protection and blood flow (GMBF) in the absence and in the presence of intraluminal ethanol. METHODS: Ethanol (70% v/v)-induced gastric mucosal injury after orogastric dosing was quantitated at 30 min and GMBF determined in an ex vivo gastric chamber preparation. RESULTS: Somatostatin (4 microg/kg; i.p.) protection against ethanol-induced ulceration was prevented by the NO inhibitor L-NNA and restored by L-arginine, but not D-arginine. Somatostatin (1-8 microg/kg; i.p.) did not effect basal GMBF. The gastroprotective dose of somatostatin (4 microg/kg; i.p.) prevented the decrease in GMBF caused by ethanol. L-NNA reversed this vascular effect of somatostatin. CONCLUSION: Somatostatin-induced gastroprotection and restoration of GMBF during ethanol exposure involve mechanisms which are dependent on NO generation.  相似文献   

9.
We tested the hypothesis that nitric oxide (NO) produced within the carotid body is a tonic inhibitor of chemoreception and determined the contribution of neuronal and endothelial nitric oxide synthase (eNOS) isoforms to the inhibitory NO effect. Accordingly, we studied the effect of NO generated from S-nitroso-N-acetylpenicillamide (SNAP) and compared the effects of the nonselective inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) and the selective nNOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole (TRIM) on chemosensory dose-response curves induced by nicotine and NaCN and responses to hypoxia (Po(2) approximately 30 Torr). CBs excised from pentobarbitone-anesthetized cats were perfused in vitro with Tyrode at 38 degrees C and pH 7.40, and chemosensory discharges were recorded from the carotid sinus nerve. SNAP (100 microM) reduced the responses to nicotine and NaCN. l-NAME (1 mM) enhanced the responses to nicotine and NaCN by increasing their duration, but TRIM (100 microM) only enhanced the responses to high doses of NaCN. The amplitude of the response to hypoxia was enhanced by l-NAME but not by TRIM. Our results suggest that both isoforms contribute to the NO action, but eNOS being the main source for NO in the cat CB and exerting a tonic effect upon chemoreceptor activity.  相似文献   

10.
Studies have shown that p38 MAPK and nitric oxide (NO), generated by endothelial NO synthase (eNOS), play key roles under physiological and pathophysiological conditions. Although administration of 17beta-estradiol (E2) protects cardiovascular injury from trauma-hemorrhage, the mechanism by which E2 produces those effects remains unknown. Our objective was to determine whether the E2-mediated activation of myocardial p38 MAPK and subsequent eNOS expression/phosphorylation would protect the heart following trauma-hemorrhage. To study this, male Sprague-Dawley rats underwent soft-tissue trauma (midline laparatomy) and hemorrhagic shock (mean blood pressure 35-40 mmHg for 90 min), followed by fluid resuscitation. Animals were pretreated with specific p38 MAPK inhibitor SB-203580 (SB; 2 mg/kg), and nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 30 mg/kg) 30 min before vehicle (cyclodextrin) or E2 (100 microg/kg) treatment, followed by resuscitation, and were killed 2 h thereafter. Cardiovascular performance and other parameters were measured. E2 administration following trauma-hemorrhage increased cardiac p38 MAPK activity, eNOS expression and phosphorylation at Ser(1177), and nitrate/nitrite levels in plasma and heart tissues; these were associated with normalized cardiac performance, which was reversed by SB administration. In addition, E2 also prevented trauma-hemorrhage-induced increase in cytokines (IL-6 and TNF-alpha), chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant-1), and ICAM-1, which was reversed by l-NAME administration. Administration of E2 following trauma-hemorrhage attenuated cardiac tissue injury markers, myeloperoxidase activity, and nitrotyrosine level, which were reversed by treatment with SB and l-NAME. The salutary effects of E2 on cardiac functions and tissue protection following trauma-hemorrhage are mediated, in part, through activation of p38 MAPK and subsequent eNOS expression and phosphorylation.  相似文献   

11.
The aim of this study was to investigate the effects of peripherally injected glucagon like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and the mechanisms included in the effect. Absolute ethanol was administered through an orogastric cannula right after the injection of GLP-1 (1, 10, 100, 1000 or 10,000 ng/kg; i.p.). The rats were decapitated an hour later, the stomachs removed and the gastric mucosal damage scored. 1000 ng GLP-1 inhibited gastric mucosal damage by 45% and 10,000 ng GLP-1 by 60%. The specific receptor antagonist exendin-(9-39) (2500 ng/kg; i.p.), calcitonin gene related peptide (CGRP) receptor antagonist CGRP-(8-37) (10 microg/kg; i.p.), nitric oxide (NO) synthase inhibitor l-NAME (30 mg/kg; s.c.) and cyclooxygenase inhibitor indomethacin (5 mg/kg; i.p.) inhibited the preventive effect of GLP-1 on ethanol-induced gastric mucosal damage. GLP-1 also prevented the decrease in gastric mucosal blood flow caused by ethanol when administered at gastroprotective doses (1000 and 10,000 ng/kg; i.p.). In conclusion, GLP-1 administered peripherally prevents the gastric mucosal damage caused by ethanol in rats. CGRP, NO, prostaglandin and gastric mucosal blood flow are thought to play a role in this effect, mediated through receptors specific to GLP-1.  相似文献   

12.
The vasodilator effect of the ethanolic extract of leaves from Hancornia speciosa Gomes (HSE) was evaluated in superior mesenteric artery rings. HSE produced a concentration-dependent vasodilation (IC50 = 10.8 +/- 4.0 microg/mL) in arterial rings pre-contracted with phenylephrine, which was completely abolished in endothelium-denuded vessels. Endothelium-dependent vasodilation induced by HSE was strongly reduced by L-NAME (100 microM), a nitric oxide (NO) synthase inhibitor, but neither by atropine, a muscarinic receptor antagonist (1 microM), nor by indomethacin (10 microM), a cyclooxygenase inhibitor. In rings pre-contracted with 80 mM KCl, the vasodilator effect of HSE was shifted to the right and was completely abolished in the presence of L-NAME (100 microM). Similar effects were obtained in mesenteric rings pre-contracted with phenylephrine in the presence of KCl 25 mM alone or in addition to 100 microM L-NAME. In addition, BaCl2 (1 mM) dramatically reduced the vasodilation induced by HSE. Together, these findings led us to conclude that HSE induces an endothelium-dependent vasodilation in rat mesenteric artery, by a mechanism dependent on NO, on the activation of potassium channels and endothelium-derived hyperpolarizing factor release. Rutin, identified as a major peak in the HPLC fingerprint obtained for HSE, might contribute for the observed vasodilator effect, since it was able to induce an endothelium-dependent vasodilation in rat superior mesenteric arteries.  相似文献   

13.
Kim BJ  Lee JH  Jun JY  Chang IY  So I  Kim KW 《Molecules and cells》2006,21(3):337-342
Interstitial cells of Cajal (ICCs) are pacemaker cells that activate the periodic spontaneous depolarization (pacemaker potentials) responsible for the production of slow waves in gastrointestinal smooth muscle. The effects of vasoactive intestinal polypeptide (VIP) on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by whole-cell patch-clamp techniques. Addition of VIP (50 nM-1 microM) decreased the amplitude of pacemaker potentials and depolarized resting membrane potentials. To examine the type of receptors involved in ICC, we examined the effects of the VIP1 agonist and found that it had no effect on pacemaker potentials. Pretreatment with VIP1 antagonist (1 microM) for 10 min also did not block the VIP (50 nM)-induced effects. On the other hand exposure to 1H-(1,2,4)oxadiazolo(4,3-A)quinoxalin- 1-one (ODQ, 100 microM), an inhibitor of guanylate cyclase, prevented VIP inhibition of pacemaker potentials. Similarly KT-5823 (1 microM) or RP-8-CPT-cGMPS (10 microM), inhibitors of protein kinase G (PKG) blocked the effect of VIP (50 nM) on pacemaker potentials as did N-nitro-L-arginine (L-NA, 100 mM), a non-selective nitric oxide synthase (NOS) inhibitor. These results imply that the inhibition of pacemaker activity by VIP depends on the NO-cGMP-PKG pathway.  相似文献   

14.
The present study tested the hypothesis that cyclic ADP ribose (cADPR) serves as a novel second messenger to mediate intracellular Ca2+ mobilization in coronary arterial endothelial cells (CAECs) and thereby contributes to endothelium-dependent vasodilation. In isolated and perfused small bovine coronary arteries, bradykinin (BK)-induced concentration-dependent vasodilation was significantly attenuated by 8-bromo-cADPR (a cell-permeable cADPR antagonist), ryanodine (an antagonist of ryanodine receptors), or nicotinamide (an ADP-ribosyl cyclase inhibitor). By in situ simultaneously fluorescent monitoring, Ca2+ transient and nitric oxide (NO) levels in the intact coronary arterial endothelium preparation, 8-bromo-cADPR (30 microM), ryanodine (50 microM), and nicotinamide (6 mM) substantially attenuated BK (1 microM)-induced increase in intracellular [Ca2+] by 78%, 80%, and 74%, respectively, whereas these compounds significantly blocked BK-induced NO increase by about 80%, and inositol 1,4,5-trisphosphate receptor blockade with 2-aminethoxydiphenyl borate (50 microM) only blunted BK-induced Ca2+-NO signaling by about 30%. With the use of cADPR-cycling assay, it was found that inhibition of ADP-ribosyl cyclase by nicotinamide substantially blocked BK-induced intracellular cADPR production. Furthermore, HPLC analysis showed that the conversion rate of beta-nicotinamide guanine dinucleotide into cyclic GDP ribose dramatically increased by stimulation with BK, which was blockable by nicotinamide. However, U-73122, a phospholipase C inhibitor, had no effect on this BK-induced increase in ADP-ribosyl cyclase activity for cADPR production. In conclusion, these results suggest that cADPR importantly contributes to BK- and A-23187-induced NO production and vasodilator response in coronary arteries through its Ca2+ signaling mechanism in CAECs.  相似文献   

15.
Recent studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the fall in cerebral blood flow (CBF) after subarachnoid hemorrhage (SAH), but the factors that stimulate the production of 20-HETE are unknown. This study examines the role of vasoactive factors released by clotting blood vs. the scavenging of nitric oxide (NO) by hemoglobin (Hb) in the fall in CBF after SAH. Intracisternal (icv) injection of blood produced a greater and more prolonged (120 vs. 30 min) decrease in CBF than that produced by a 4% solution of Hb. Pretreating rats with N(omega)-nitro-l-arginine methyl ester (l-NAME; 10 mg/kg iv) to block the synthesis of NO had no effect on the fall in CBF produced by an icv injection of blood. l-NAME enhanced rather than attenuated the fall in CBF produced by an icv injection of Hb. Blockade of the synthesis of 20-HETE with TS-011 (0.1 mg/kg iv) prevented the sustained fall in CBF produced by an icv injection of blood and the transient vasoconstrictor response to Hb. Hb (0.1%) reduced the diameter of the basilar artery (BA) of rats in vitro by 10 +/- 2%. This response was reversed by TS-011 (100 nM). Pretreatment of vessels with l-NAME (300 muM) reduced the diameter of BA and blocked the subsequent vasoconstrictor response to the addition of Hb to the bath. TS-011 returned the diameter of vessels exposed to l-NAME and Hb to that of control. These results suggest that the fall in CBF after SAH is largely due to the release of vasoactive factors by clotting blood rather than the scavenging of NO by Hb and that 20-HETE contributes the vasoconstrictor response of cerebral vessels to both Hb and blood.  相似文献   

16.
Nishida S  Satoh H 《Life sciences》2006,79(12):1203-1206
Vasodilating actions of sinomenine were examined using rat aorta ring strips. Sinomenine (0.1 to 100 microM) dilated norepinephrine (NE, 5 microM)-induced vasoconstriction in a concentration-dependent manner reaching 68.8+/-5.1% (n=6, P<0.01) at a concentration of 100 microM. Sinomenine (100 microM) also attenuated KCl (60 mM) and phorbol 12, 13-dibutyrate (PDB, a protein kinase C, PK-C, activator, 300 nM)-induced vasoconstriction by 86.9+/-8.5% (n=6, P<0.01) and 49.9+/-9.8% (n=6, P<0.01), respectively. Pretreatment with nicardipine (a Ca2+ channel antagonist), staurosporine (a PK-C inhibitor), NG-monomethyl-L-arginine acetate (L-NMMA, a nitric oxide, NO, synthesis inhibitor), and indomethacin (a cyclooxygenase inhibitor) were carried out. Nicardipine (0.1 microM) led to a significant decrease in the vasodilating potential of sinomenine (at 100 microM, 68.8+/-5.1% vs. 35.5+/-6.9%; n=5, P<0.001). Pretreatment with staurosporine (30 nM) reduced sinomenine-associated vasodilation from 68.8+/-5.1% to 49.5+/-7.7% (n=5, P<0.001), and L-NMMA (100 microM) and indomethacin (10 microM), to 25.3+/-2.3% (n=5, P<0.001) and to 37.1+/-9.3% (n=5, P<0.001), respectively. The responses were almost similar to the results without endothelium. Therefore, these results indicate that sinomenine causes the vasorelaxation by the mechanisms involved with the inhibitions of Ca2+ channel and PK-C activity, and also with the activations of NO and prostaglandin (PG) I2 syntheses in endothelium.  相似文献   

17.
The primary aims of this study were to evaluate the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) on gastric emptying (GE) of, and the blood pressure (BP), glycemic, insulin, and incretin responses to, oral glucose in older subjects. Eight healthy subjects (4 males and 4 females, aged 70.9 +/- 1.3 yr) were studied on two separate days, in double-blind, randomized order. Subjects received an intravenous infusion of either l-NAME (180 mug.kg(-1).h(-1)) or saline (0.9%) at a rate of 3 ml/min for 150 min. Thirty minutes after the commencement of the infusion (0 min), subjects consumed a 300-ml drink containing 50 g glucose labeled with 20 MBq (99m)Tc-sulfur colloid, while sitting in front of a gamma camera. GE, BP (systolic and diastolic), heart rate (HR), blood glucose, plasma insulin, and incretin hormones, glucose-dependant insulinotropic-polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), were measured. l-NAME had no effect on GE, GIP, and GLP-1. Between -30 and 0 min l-NAME had no effect on BP or HR. After the drink (0-60 min), systolic and diastolic BP fell (P < 0.05) and HR increased (P < 0.01) during saline; these effects were attenuated (P < 0.001) by l-NAME. Blood glucose levels between 90 and 150 min were higher (P < 0.001) and plasma insulin were between 15 and 150 min less (P < 0.001) after l-NAME. The fall in BP, increase in HR, and stimulation of insulin secretion by oral glucose in older subjects were mediated by NO mechanisms by an effect unrelated to GE or changes in incretin hormones.  相似文献   

18.
Increased cardiovascular risk after mercury exposure has been described, but the underlying mechanisms are not well explored. We analyzed the effects of chronic exposure to low mercury concentrations on endothelium-dependent responses in aorta and mesenteric resistance arteries (MRA). Wistar rats were treated with mercury chloride (1st dose 4.6 microg/kg, subsequent dose 0.07 microg.kg(-1).day(-1) im, 30 days) or vehicle. Blood levels at the end of treatment were 7.97 +/- 0.59 ng/ml. Mercury treatment: 1) did not affect systolic blood pressure; 2) increased phenylephrine-induced vasoconstriction; 3) reduced acetylcholine-induced vasodilatation; and 4) reduced in aorta and abolished in MRA the increased phenylephrine responses induced by either endothelium removal or the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, 100 microM). Superoxide dismutase (SOD, 150 U/ml) and the NADPH oxidase inhibitor apocynin (0.3 mM) decreased the phenylephrine-induced contraction in aorta more in mercury-treated rats than controls. In MRA, SOD did not affect phenylephrine responses; however, when coincubated with l-NAME, the l-NAME effect on phenylephrine response was restored in mercury-treated rats. Both apocynin and SOD restored the impaired acetylcholine-induced vasodilatation in vessels from treated rats. Endothelial NOS expression did not change in aorta but was increased in MRA from mercury-treated rats. Vascular O2(-) production, plasmatic malondialdehyde levels, and total antioxidant status increased with the mercury treatment. In conclusion, chronic exposure to low concentrations of mercury promotes endothelial dysfunction as a result of the decreased NO bioavailability induced by increases in oxidative stress. These findings offer further evidence that mercury, even at low concentrations, is an environmental risk factor for cardiovascular disease.  相似文献   

19.
Hydrogen peroxide, a relatively stable reactive oxygen species, is known to elicit vasodilation, but its underlying mechanism remains elusive. Here, we examined the role of endothelial nitric oxide (NO), prostaglandin, cytochrome P-450-derived metabolites, and smooth muscle potassium channels in coronary arteriolar dilation to abluminal H2O2. Pig subepicardial coronary arterioles (50-100 microm) were isolated and pressurized without flow for in vitro study. Arterioles developed basal tone and dilated dose dependently to H2O2 (1-100 microM). Disruption of th endothelium and inhibition of cyclooxygenase (COX) by indomethacin produced identical attenuation of vasodilation to H2O2. Conversely, the vasodilation to H2O2 was not affected by either the NO synthase inhibitor NG-nitro-l-arginine methyl ester or the cytochrome P-450 enzyme blocker miconazole. Inhibition of the COX-1, but not the COX-2 pathway, attenuated H2O2-induced dilation similarly to indomethacin. The production of prostaglandin E2 (PGE2), but not prostaglandin I2, from coronary arterioles was significantly increased by H2O2. Furthermore, inhibition of PGE2 receptors with AH-6809 attenuated vasodilation to H2O2 similar to that produced by indomethacin. In the absence of a functional endothelium, H2O2-induced dilation was attenuated, in an identical manner, by a depolarizing agent KCl and a calcium-activated potassium (KCa) channel inhibitor iberiotoxin. However, PGE2-induced dilation was not affected by iberiotoxin. The endothelium-independent dilation to H2O2 was also insensitive to the inhibition of guanylyl cyclase, lipoxygenase, ATP-sensitive potassium channels, and inward rectifier potassium channels. These results suggest that H2O2 induces endothelium-dependent vasodilation through COX-1-mediated release of PGE2 and also directly relaxes smooth muscle by hyperpolarization through KCa channel activation.  相似文献   

20.
The aim of the study was to investigate the effect of iNOS expression on eNOS and nNOS functional activity in porcine cerebral arteries. iNOS was induced in pig basilar arteries using lipopolysaccharide (LPS). Arteries expressing iNOS generated NO and relaxed when challenged with L-arginine (30 microM), an effect that was reduced by treatment with dexamethasone (coincubated with LPS) and prevented by the iNOS inhibitor 1400 W (administered 10 min prior to precontraction). eNOS was activated by A23187 and was found to be impaired in arteries that had iNOS induced (A23187 1 microM relaxation: control 110+/-8%, LPS-treated 50+/-16% ; p<0.05, N=5-6). This was due mainly to reduced formation of NO by A23187 (NO concentration in response to A23187 1 microM: control 25+/-6 nM, LPS-treated 0.8+/-1.2 nM; p<0.001, N=5-6), in addition to a small reduction in the vasodilator response to the NO-donors NOC-22 and SIN-1. Cerebral vasodilation produced by stimulation of intramural nitrergic nerves was impaired in arteries that had iNOS induced, and this was reversed by 1400 W (control 23+/-4% relaxation, LPS-treated 11+/-1% relaxation, LPS plus 1400 W 10 microM treated 25+/-2% relaxation; p<0.01 for control versus LPS, N=6). It is concluded that the induction of iNOS in cerebral arteries reduces NO-mediated vasodilation initiated by eNOS and by nNOS, primarily by modulation of NO formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号