首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial distributions of the RF power absorbed by plasma electrons in an ion source operating in the helicon mode (ω ci < ω < ω ce < ω pe ) are studied numerically by using a simplified model of an RF plasma source in an external uniform magnetic field. The parameters of the source used in numerical simulations are determined by the necessity of the simultaneous excitation of two types of waves, helicons and Trivelpiece-Gould modes, for which the corresponding transparency diagrams are used. The numerical simulations are carried out for two values of the working gas (helium) pressure and two values of the discharge chamber length under the assumption that symmetric modes are excited. The parameters of the source correspond to those of the injector of the nuclear scanning microprobe operating at the Institute of Applied Physics, National Academy of Sciences of Ukraine. It is assumed that the mechanism of RF power absorption is based on the acceleration of plasma electrons in the field of a Trivelpiece-Gould mode, which is interrupted by pair collisions of plasma electrons with neutral atoms and ions of the working gas. The simulation results show that the total absorbed RF power at a fixed plasma density depends in a resonant manner on the magnetic field. The resonance is found to become smoother with increasing working gas pressure. The distributions of the absorbed RF power in the discharge chamber are presented. The achievable density of the extracted current is estimated using the Bohm criterion.  相似文献   

2.
The problem of separating gadolinium isotopes is discussed. The parameters of isotope separation in a plasma by the ICR method are estimated for a device with given operating parameters. The mean transverse energy 〈E〉 of the heated ions of the 157Gd isotope and the heating efficiency η are calculated as functions of the frequency of the RF electric field in the plasma. The dependence of the heating efficiency η on the longitudinal temperature of the plasma flow is investigated. The issue of how the concentration of the target isotope ions at the collector plate depends on the longitudinal coordinate measured from the front edge of the plate is analyzed for different values of the frequency detuning parameter. The extraction coefficient Г for the target isotope is calculated as a function of the distance b between the collector plates for different frequency detunings.  相似文献   

3.
Transverse collisionless shock waves in a plasma in which the initial β value is equal to zero for electrons and is small but nonzero for ions are studied in the two-dimensional approximation with allowance for anomalous resistivity. A hybrid model is applied such that the ions are treated in the kinetic approximation and the electrons are described in the hydrodynamic approximation. A collisionless shock wave is generated using a piston with a small two-dimensional perturbation. The ion distribution downstream of the shock front and the effect of electron and ion heating are analyzed. It is shown that, for Alfvén-Mach numbers M A>2, ion heating is attributed primarily to the ions that have experienced a reflection from the shock front and whose velocities downstream of the front are very high. This conclusion agrees with the results of one-dimensional calculations. Solving the problem as formulated shows that two-dimensional effects are insignificant in the range of low Alfvén-Mach numbers (M A≤5): the direction of the magnetic field is always close to its initial direction, the ions acquire low velocities along the magnetic field, and the quantitative parameters of the plasma downstream of the shock front are close to those obtained from the one-dimensional model. In the range of higher Alfvén-Mach numbers, two-dimensional effects are more pronounced and the ion distribution function is less anisotropic.  相似文献   

4.
In the l = 3 Uragan-3M (U-3M) torsatron with a helical divertor the plasma is produced and heated by RF field in the ω ≤ ω ci range of frequencies. A two-temperature ion perpendicular energy distribution with a suprathermal tail sets in with heating. If the heating power is high enough, a spontaneous transition to an H-like confinement mode is observed. Recently, it has been supposed that the transition is connected with hotter and suprathermal ions (common name “fast ions“, FI) loss. The objective of this work is an experimental elucidation of the real link between the H-transition and FI loss. To do this, a transient regime of the RF discharge with two H-mode states is chosen, and the evolution is followed of electron density, FI content in the confinement volume, FI outflow to the divertor and edge potential. On the basis of juxtaposing of these processes, a conclusion is made that the H-mode transition in U-3M is really driven by FI loss. Possible mechanisms resulting in the transition are discussed, among them the ion orbit loss and the radial drift of helically-trapped ion orbits seem most probable.  相似文献   

5.
Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito.  相似文献   

6.
A systematic procedure for analyzing the physical processes that govern ICR heating in systems for ion separation is developed. The procedure is based on an analytic model of an rf antenna generating rf fields within a plasma column in a magnetic field and includes such issues as the calculation of rf fields, examination of the ICR interaction of ions with these fields, and determination of the distribution function of the ion flow at the exit from the ICR heating system. It is shown that, even in ICR heating systems with easily achievable parameter values, ions with appreciably different masses can be efficiently separated by energy.  相似文献   

7.
Physical processes determining the excitation of RF electromagnetic fields in a plasma column in a magnetic field are analyzed. The Alfvén resonance plays an important role at frequencies close to the ion cyclotron frequency. It leads to the enhancement of the RF electric field and transformation of Alfvén oscillations with a predominantly transverse polarization of the electric field into lower hybrid ones, which have a significant longitudinal component of the electric field. Lower hybrid oscillations efficiently interact with electrons causing their heating. Difficulties in the implementation of ion cyclotron resonance heating by the magnetic beach method are outlined. The processes considered in this work can be important for the VASIMR plasma engine.  相似文献   

8.
In conditions of ideal axisymmetry, for a magnetized plasma in a generic bounded domain, necessarily toroidal, the uniform absorption of external energy (e.g., RF or any isotropic auxiliary heating) cannot give rise to net forces or torques. Experimental evidence on contemporary tokamaks shows that the near central absorption of RF heating power (ICH and ECH) and current drive in presence of MHD activity drives a bulk plasma rotation in the co-I p direction, opposite to the initial one. Also the appearance of classical or neoclassical tearing modes provides a nonlinear magnetic braking that tends to clamp the rotation profile at the q-rational surfaces. The physical origin of the torque associated with P RF absorption could be due the effects of asymmetry in the equilibrium configuration or in power deposition, but here we point out also an effect of the response of the so-called neoclassical offset velocity to the power dependent heat flow increment. The neoclassical toroidal viscosity due to internal magnetic kink or tearing modes tends to relax the plasma rotation to this asymptotic speed, which in absence of auxiliary heating is of the order of the ion diamagnetic velocity. It can be shown by kinetic and fluid calculations, that the absorption of auxiliary power by ions modifies this offset proportionally to the injected power thereby forcing the plasma rotation in a direction opposite to the initial, to large values. The problem is discussed in the frame of the theoretical models of neoclassical toroidal viscosity.  相似文献   

9.
The effect of an RF field on a steady-state beam-plasma discharge with a plane electrode placed parallel to a sheetlike electron beam is studied experimentally. The plasma parameters were measured by a single probe, and the electron distribution function was determined with the use of an electrostatic analyzer. The energy and current of the electron beam were E B=2.5 keV and J B=0.05–1.5 A, respectively. The working pressure was p=2×10?5–10?3 torr. The frequency of the external RF field was 13.56 MHz. Both the steady-state regimes in which the RF field had no effect on the plasma parameters and regimes with a pronounced effect of the RF field were observed. The experiments show that the regime of the discharge depends strongly on the plasma density and the magnetic field. The parametric instability is studied theoretically in the weak-turbulence approximation. It is shown that, due to the decay nature of the spectrum of plasma oscillations, the onset of instability is accompanied by the transfer of the energy of fluctuations over the spectrum, from the pump frequency toward its harmonics.  相似文献   

10.
A brief review is given of papers on the RF production of a plasma whose electrons are heated due to the parametric turbulence driven by an alternating electric pump field and maintain the discharge by ionizing the working gas atoms. Results are summarized from studies of low-frequency parametric turbulence, specifically, ion-acoustic plasma turbulence in a magnetic field, ion-cyclotron turbulence associated with the excitation of ion Bernstein modes, and lower hybrid turbulence in a plasma with ions of one or two species. The turbulence level and the rate of turbulent heating of the electrons and ions are presented, and the results of modeling of these phenomena are described. Attention is focused on experiments in which low-frequency parametric turbulence may be observed.  相似文献   

11.
The ion distribution function over transverse velocities and the ion heating efficiency (which is defined as the fraction η of ions heated above a certain energy Wmin) are calculated in the context of a plasma method for isotope separation on the basis of ion cyclotron resonance heating. The ion distribution function over longitudinal velocities is assumed to be linear in the range of low velocities. It is shown that, when the ions are heated to high energies, the averaged ion distribution function over transverse velocities becomes highly nonequilibrium and has two peaks. Results are presented from calculations of the ion heating efficiency η for Wmin=40 eV and for different values of the parameter p that characterizes the ratio of the wavelength λ of the antenna electric field to the length L of the heating region. The relative roles of the time-of-flight and the Doppler broadening are analyzed, and the separation parameters of a collector of heated ions are estimated.  相似文献   

12.
Results of experiments on isotope separation by the ion cyclotron resonance (ICR) method in plasma are presented. The deposition of hot lithium ions on a plane collector was studied. The density distribution and isotope composition of lithium deposited on the surface of the plane collector were measured. It is found that, without applying a positive potential to the collector plate, the deposition density is nonuniform in the direction perpendicular to the external magnetic field, whereas in the presence of a retarding potential (+20 V), the deposited layer becomes almost uniform. It is shown that the asymmetry of deposition is not caused by the rotating RF field selectively heating ions of the extracted isotope. Possible reasons for the nonuniform deposition of lithium on the collector are discussed.  相似文献   

13.
The Virtual Population (ViP) phantoms have been used in many dosimetry studies, yet, to date, anatomical phantom uncertainty in radiofrequency (RF) research has largely been neglected. The objective of this study is to gain insight, for the first time, regarding the uncertainty in RF‐induced fields during magnetic resonance imaging associated with tissue assignment and segmentation quality and consistency in anatomical phantoms by evaluating the differences between two generations of ViP phantoms, ViP1.x and ViP3.0. The RF‐induced 10g‐average electric (E‐) fields, tangential E‐fields distribution along active implantable medical devices (AIMD) routings, and estimated AIMD heating were compared for five phantoms that are part of both ViP1.x and ViP3.0. The results demonstrated that differences exceeded 3 dB (?29%, +41%) for local quantities and 1 dB (±12% for field, ±25% for power) for integrated and volume‐averaged quantities (e.g., estimated AIMD‐heating and 10 g‐average E‐fields), while the variation across different ViP phantoms of the same generation can exceed 10 dB (?68% and +217% for field, ?90% and +900% for power). In conclusion, the anatomical phantom uncertainty associated with tissue assignment and segmentation quality/consistency is larger than previously assumed, i.e., 0.6 dB or ±15% (k = 1) for AIMD heating. Further, multiple phantoms based on different volunteers covering the target population are required for quantitative analysis of dosimetric endpoints, e.g., AIMD heating, which depend on patient anatomy. Phantoms with the highest fidelity in tissue assignment and segmentation should be used, as these ensure the lowest uncertainty and possible underestimation of exposure. To verify that the uncertainty decreases monotonically with improved phantom quality, the evaluation of differences between phantom generations should be repeated for any improvement in segmentation. Bioelectromagnetics. 2019;40:458–471. © 2019 Bioelectromagnetics Society  相似文献   

14.
This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.  相似文献   

15.
A theoretical study is made of the possibility of additional heating of a radially inhomogeneous plasma in confinement systems with a rippled magnetic field via the absorption of satellite harmonics of the surface flute modes with frequencies below the electron gyrofrequency in the local resonance region, ε1 (r 1) = [2πc/(ωL)]2, where ε1 is the diagonal element of the plasma dielectric tensor in the hydrodynamic approximation, L is the period of a constant external rippled magnetic field, and the radical coordinate r 1 determines the position of the local resonance. It is found that the high-frequency power absorbed near the local resonance is proportional to the square of the ripple amplitude of the external magnetic field. The mechanism proposed is shown to ensure the absorption of the energy of surface flute modes and, thereby, the heating of a radially inhomogeneous plasma.  相似文献   

16.
It is shown that relativistic electron current can propagate across the magnetic field B 0 over a distance d much larger than the electron gyroradius, r 0 ? m e v z c/(eB 0) ? d. This current is driven by the Hall electric field, which is generated on a spatial scale equal to the magnetic Debye radius r B = B 0/(4πen e) and causes the electrons to drift in crossed electric and magnetic fields. For a plane equilibrium current configuration, analytic profiles of the electron velocity and electron density are calculated and the electric and magnetic fields are determined. The results obtained are used to explain electron leakages in magnetically insulated transmission lines filled with a plasma expanding from the electrodes. Equations describing an equilibrium configuration of the ions and electrons that drift simultaneously across a strong magnetic field are derived.  相似文献   

17.
Previous experiments revealed the effect of stable acceleration of ions in a plasma-beam discharge in a low magnetic field to energies one order of magnitude higher than the electron thermal energy. To verify the previously proposed mechanisms for this effect, the velocity distribution function of the electrons arriving at the collector and the energy distribution of the ions escaping from the discharge transversely to the axis were measured. It is found that ion acceleration is accompanied by significant electron heating near the discharge axis. The time behavior and longitudinal profile of the intensity of the excited high-frequency oscillations in the frequency range ω ~ ω pe were studied. The accumulation of regular oscillations in the beam-injection region and their stochastization during the propagation along the system axis were observed. The experimental results correlate qualitatively with the data of previous numerical simulations.  相似文献   

18.
19.
In the ? = 3 Uragan-3M torsatron, hydrogen plasma is produced and heated by RF fields in the Alfvén range of frequencies (ω ? ω ci ). To this end, a frame antenna with a broad spectrum of generated parallel wavenumbers is used. The RF discharge evolution is studied experimentally at different values of the RF power fed to the antenna (the anode voltage of the oscillator and the antenna current) and the initial pressure of the fueling gas. It is shown that, depending on the antenna current and hydrogen pressure, the discharge can operate in two regimes differing in the plasma density, temperature, and particle loss. The change in the discharge regime with increasing anode voltage is steplike in character. The particular values of the anode voltage and pressure at which the change occurs are affected by RF preionization or breakdown stabilization by a microwave discharge. The obtained results will be used in future experiments to choose the optimal regimes of the frame-antenna-produced RF discharge as a target for the production and heating of a denser plasma by another, shorter wavelength three-half-turn antenna.  相似文献   

20.
The structure of the RF magnetic field in the vicinity of a loop antenna operating in the whistler frequency range has been studied experimentally and theoretically. The experiments were performed over a wide frequency range at different values of the plasma density, electron temperature, and ambient magnetic field strength. It is shown that, when a loop antenna is smaller than the wavelength of a quasi-longitudinal whistler, the structure of the magnetic field of such an antenna is nearly the same as that of the field of a current-carrying loop in vacuum; otherwise, the RF field is localized near the antenna wire. The results of numerical calculations agree with the measured field distributions. The antenna field is calculated by expanding it in the eigenmodes of a magnetized plasma with allowance for not only propagating but also nonpropagating (exponentially decaying) waves, which make the main contribution to the near field. An analytic estimate of the depth to which the RF magnetic field of a loop antenna penetrates into the plasma is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号