首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C is generally accepted to be a receptor protein of tumor-promoting phorbol esters. The binding of [3H]phorbol-12,13-dibutyrate to protein kinase C can be assayed by a rapid filtration procedure using a glass-fiber filter that has been treated with a cationic polymer, polyethylenimine. The phorbol ester specifically binds to the protein kinase only in the presence of phosphatidylserine and calcium. Non-specific binding is less than 10%, at most, of the total binding. The binding is linear with respect to the concentration of protein kinase C, is dependent on the concentrations of phorbol ester and phosphatidylserine in a saturative manner, and is inhibited by diacylglycerol (an endogenous activator of the protein kinase).  相似文献   

2.
Incubation of human platelets with 12-0-tetradecanoylphorbol-13-acetate (TPA) caused a rapid decrease in soluble Ca2+, phospholipid-dependent protein kinase activity (protein kinase C) and an increase in protein kinase C associated with the particulate fraction. TPA also induced an increased activity of a Ca2+, phospholipid-independent protein kinase activity in both the soluble and the particulate fractions of platelets. This latter kinase eluted from DEAE cellulose columns at a higher salt concentration than protein kinase C, and was shown by Sephadex G-100 chromatography to have a MW of approx. 50,000 compared with an MW of 80,000 for protein kinase C. The data suggest that TPA treatment of platelets causes irreversible activation of protein kinase C by proteolysis of the enzyme to a form active in the absence of Ca2+ and phospholipid.  相似文献   

3.
Osmotic shock can cause insulin resistance in 3T3-L1 adipocytes by inhibiting insulin activation of glucose transport, p70S6 kinase, glycogen synthesis, and lipogenesis. By further investigating the relationship between insulin and hypertonic stress, we have discovered that osmotic shock enhanced by 10-fold the insulin-stimulated tyrosine phosphorylation of a 68-kDa protein. Phosphorylation by insulin was maximal after 1 min and was saturated with 50-100 nm insulin. The effect of sorbitol was completely reversible by 2.5 min. pp68 was a peripheral protein that was localized to the detergent insoluble fraction of the low density microsomes but was not associated with the cytoskeleton. Stimulation of the p42/44 and the p38 MAP kinase pathways by osmotic shock had no effect on pp68 phosphorylation. Treatment of adipocytes with the phosphotyrosine phosphatase inhibitor phenylarsine oxide also enhanced insulin-activated tyrosine phosphorylation of pp68 suggesting that osmotic shock may increase pp68 phosphorylation by inhibiting a phosphotyrosine phosphatase. Dissociation of pp68 from the low density microsomes with RNase A indicated that pp68 binds to RNA. Failure to immunoprecipitate pp68 using antibodies directed against known 60-70-kDa tyrosine-phosphorylated proteins suggest that pp68 may be a novel cellular target that lies downstream of the insulin receptor.  相似文献   

4.
Increased membrane permeability (conductance) that is specific for K+ and directly activated by Ca2+ ions, has been identified in isolated adipocyte plasma membranes using the K+ analogue, 86Rb+. Activation of these K+ conductance pathways (channels) by free Ca2+ was concentration dependent with a half-maximal effect occurring at 32 +/- 4 nM free Ca2+ (n = 7). Addition of calmodulin further enhanced the Ca2+ activating effect on 86Rb+ uptake (K+ channel activity). Ca2+-dependent 86Rb+ uptake was inhibited by tetraethylammonium ion and low pH. It is concluded that the adipocyte plasma membrane possesses K+ channels that are activated by Ca2+ and amplified by calmodulin.  相似文献   

5.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

6.
Diacylglycerol kinase (DGK) and protein kinase C (PKC) are two different enzyme families that interact with diacylglycerol. Both enzymes contain cysteine-rich C1 domains with a zinc finger-like structure. Most of the C1 domains of PKCs show strong phorbol-12,13-dibutyrate (PDBu) binding with nanomolar dissociation constants (K(d)'s). However, there has been no experimental evidence that phorbol esters bind to the C1 domains of DGKs. We focused on DGK gamma because its C1A domain has a high degree of sequence homology to those of PKCs, and because DGK gamma translocates from the cytoplasm to the plasma membrane following 12-O-tetradecanoylphorbol-13-acetate treatment similar to PKCs. Two C1 domains of DGK gamma (DGK gamma-C1A and DGK gamma-C1B) were synthesized and tested for their PDBu binding along with whole DGK gamma (Flag-DGK gamma) expressed in COS-7 cells. DGK gamma-C1A and Flag-DGK gamma showed strong PDBu binding affinity, while DGK gamma-C1B was completely inactive. Scatchard analysis of DGK gamma-C1A and Flag-DGK gamma gave K(d)'s of 3.1 and 4.4 nM, respectively, indicating that the major PDBu binding site of DGK gamma is C1A. This is the first evidence that DGK gamma is a specific receptor of tumor-promoting phorbol esters.  相似文献   

7.
A protein in the sarcoplasmic reticulum of rabbit skeletal and cardiac muscle was identified because of its ability to bind 125I-labeled low density lipoprotein (LDL) with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein, referred to as the 165-kDa protein, is restricted to striated muscle. It was not detected in 14 other tissues, including several that contain smooth muscle, but it appears in rat L6 myoblasts when they differentiate into myocytes. Immunofluorescence and immunoelectron microscopic studies revealed that the protein is present throughout the sarcoplasmic reticulum and the terminal cisternae. It binds 45Ca2+ on nitrocellulose blots and stains metachromatically with Stains-all, a cationic dye that stains Ca2+-binding proteins. It does not appear to be a glycoprotein, and it appears slightly larger than the 160-kDa glycoprotein previously described in sarcoplasmic reticulum. The 165-kDa protein binds LDL, beta-migrating very low density lipoprotein, and a cholesterol-induced high density lipoprotein particle that contains apoprotein E as its sole apoprotein with much higher affinity than it binds high density lipoprotein. The protein is stable to boiling and to treatment with sodium dodecyl sulfate, but it becomes sensitive to these treatments when its cystine residues are reduced and alkylated. The protein was purified 1300-fold to apparent homogeneity from rabbit skeletal muscle membranes. It differs from the cell surface LDL receptor in that 1) its apparent molecular weight is not changed by reduction and alkylation; 2) it is present in Watanabe-heritable hyperlipidemic rabbits, which lack functional LDL receptors; 3) binding of lipoproteins is not inhibited by EDTA; and 4) it is located within the lumen of the sarcoplasmic reticulum where it has no access to plasma lipoproteins. It is unlikely that this protein ever binds lipoproteins in vivo; however, its lipoprotein binding activity has facilitated its purification to homogeneity and suggests that this protein has unusual structural features. The role of the 165-kDa protein in Ca2+ homeostasis in the sarcoplasmic reticulum, if any, remains to be determined.  相似文献   

8.
Calmodulin (CaM) is a highly versatile Ca(2+) signaling transducer known to regulate over a hundred proteins. In this paper, we further demonstrate the versatility of CaM binding by showing that it binds to a synthetic peptide (revCKKp) made by reversing the amino acid sequence of the CaM-binding peptide (CKKp) from CaM-dependent protein kinase kinase (CaMKK) (residues 438-463). Sequence comparison between revCKKp and other CaM-binding peptides (CBPs) from the CaM target databank showed that revCKKp does not resemble any existing classes of CBPs, except CKKp [M. Zhang, T. Yuan, Molecular mechanisms of calmodulin's functional versatility, Biochem. Cell Biol. 76 (1998) 313-323; S.W. Vetter, E. Leclerc, Novel aspects of calmodulin target recognition and activation, Eur. J. Biochem. 270 (2003) 404-414]. Furthermore, computational modeling showed that revCKKp could bind CaM in a similar manner to CKKp. Lastly, we experimentally showed that our synthetic revCKKp binds to CaM in a reversible Ca(2+)-dependent manner.  相似文献   

9.
The receptor-associated protein, RAP, is an intracellular protein that may function as a chaperone for the LDL-receptor family receptors. Here we report calmodulin as the first identified RAP binding protein outside of the LDL-receptor family members. We demonstrate that RAP binds calmodulin in a Ca2+- and pH-dependent manner characteristic of calmodulin-dependent enzymes, and present evidence that RAP is a substrate for calmodulin-dependent enzymes. Thus, CaM-kinase II and calcineurin readily phosphorylate and dephosphorylate, respectively, serine residues in RAP, and in the individual RAP domains D2 (amino acids 113-218) and D3 (amino acids 219-323) which both contain sites for CaM-kinase II-mediated phosphorylation and for calmodulin binding. In addition, we provide evidence that RAP is phosphorylated by other kinases such as casein kinase II. Studies of 32[ortho]P-labelled cell cultures demonstrate that RAP is phosphorylated in vivo. Our results suggest that RAP may have hitherto unknown functions implicating phosphorylation and calmodulin-mediated modulation.  相似文献   

10.
The effects of Ca2+ and calmodulin on endogenously catalyzed ADP-ribosylation were investigated in adipocyte plasma membranes. Four specific proteins of 70, 65, 61 and 52 kDa were labeled with [32P]ADP-ribose and ADP-ribosylation of the proteins was highly dependent upon the conditions employed. ADP-ribosylation of the 70 kDa protein was observed only in membranes supplemented with Ca2+. Maximal incorporation of [32P] into the protein was achieved with free Ca2+ concentrations of 90 microM. Calcium-stimulated ADP-ribosylation of the 70 kDa protein was inhibited by calmodulin. Half-maximal inhibition was observed in membranes incubated with 1.2 microM calmodulin. The effect of calmodulin was characterized by an inhibition of the incorporation of [32P]ADP-ribose as opposed to a stimulation of its removal. ADP-ribosylation of the 61 kDa protein was not altered by added Ca2+ and/or calmodulin whereas ADP-ribosylation of the 65 kDa protein was partially (50%) inhibited by free Ca2+ concentrations between 10(-6) - 10(-5) M. These results provide evidence that the adipocyte plasma membrane contains ADP-ribosyltransferase activities and demonstrate that ADP-ribosylation of a 70 kDa protein is regulated by Ca2+ and calmodulin.  相似文献   

11.
Talin is a high molecular weight phosphoprotein that is localized at adhesion plaques. We have found that talin phosphorylation increases 3.0-fold upon exposure of chicken embryo fibroblasts to the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. Talin isolated from tumor promoter-treated cells is phosphorylated on serine and threonine residues. Vinculin, a 130 kDa talin-binding protein, also exhibits increased phosphorylation in vivo in response to tumor promoter, but to a lesser degree than does talin. Because tumor-promoting phorbol esters augment protein kinase C activity, we have compared the ability of purified protein kinase C to phosphorylate talin and vinculin in vitro. Both talin and vinculin were found to be substrates for protein kinase C; however, talin was phosphorylated to a greater extent than was vinculin. Cleavage of protein kinase C-phosphorylated talin by the calcium-dependent protease (Type II) revealed that while both the resulting 190-200 and 46 kDa proteolytic peptides were phosphorylated, the majority of label was contained within the 46-kDa fragment. Although incubation of chicken embryo fibroblasts with tumor-promoting phorbol ester induces a dramatic increase in talin phosphorylation, we detected no change in the organization of stress fibers and focal contacts in these cells. Exposure of the cells to tumor promoter did, however, result in a loss of actin and talin-rich cell surface elaborations that resemble focal contact precursor structures.  相似文献   

12.
The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous protein kinase A (PKA) strongly phosphorylated membrane-bound CaM kinase II with simultaneous substantial activation of the Ca2+ pump (approximately 2-fold). The addition of cAMP (5-50 pM), forskolin (10 nM), or cholera toxin (10 or 100 nM) stimulated both CaM kinase II phosphorylation and Ca2+-ATPase activity, whereas these activation processes were cancelled by an inhibitor of the PKA alpha-catalytic subunit. When CaM kinase II was blocked by its specific inhibitor KN-93, the Ca2+-ATPase activity decreased to the levels measured in the absence of calmodulin; the unusually high Ca2+ affinity dropped 2-fold; and the PKA-mediated stimulation of Ca2+-ATPase was no longer seen. Hydroxylamine-resistant phosphorylation of the Ca2+-ATPase strongly increased when the PKA pathway was activated, and this phosphorylation was suppressed by inhibition of CaM kinase II. We conclude that CaM kinase II is an intermediate in a complex regulatory network of the electrocyte Ca2+ pump, which also involves calmodulin and PKA.  相似文献   

13.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

14.
Phorbol esters with different biological activities have been tested for their ability to induce the phosphorylation of human platelet proteins. We have shown that only the potent platelet aggregatory phorbol esters were able to stimulate the phosphorylation of proteins of 76, 68, 47, 30 and 20 kDa in intact platelets. The ability of these esters to stimulate phosphorylation of the 47-kDa protein ('p47') correlated with their ability to cause platelet aggregation. When a non-platelet aggregatory deoxyphorbol (12-deoxyphorbol 13-phenylacetate 20-acetate) was combined with a subthreshold dose of the Ca2+ ionophore, A23187, a large increase in phosphorylation of p47 and a fourfold decrease in Ka was observed. This was in contrast to a barely detectable stimulation of phosphorylation at micromolar levels of this phorbol ester in the absence of the ionophore. This synergism was not evident for the potent platelet aggregatory derivatives. The Ka for DOPPA with a mixture of total platelet protein kinase C was 530 nM in the absence of calcium decreasing to 120 nM in the presence of calcium. In the presence of calcium, 12-deoxyphorbol 13-phenylacetate 20-acetate was shown to stimulate preferentially one of the isoforms of protein kinase C.  相似文献   

15.
Treatment of quiescent human embryonic lung fibroblastic cells (TIG-3) with 10 nM epidermal growth factor (EGF) resulted in 4-6-fold activation of a protein kinase activity in cell extracts that phosphorylated microtubule-associated protein 2 (MAP2) on serine and threonine residues in vitro. The half-maximal activation of the kinase activity occurred within 5 min after EGF treatment, and the maximal level was attained at 15 min. Casein and histone were very poor substrates for this EGF-stimulated MAP2 kinase activity. The activation of the kinase activity persisted after brief dialysis. Interestingly, the EGF-stimulated MAP2 kinase activity was sensitive to micromolar concentrations of free Ca2+; it was inhibited 50% by 0.5 microM Ca2+ and almost totally inhibited by 2 microM Ca2+. The activated MAP2 kinase activity was recovered in flow-through fractions on phosphocellulose column chromatography, while kinase activities that phosphorylate 40 S ribosomal protein S6 (S6 kinase activities) were mostly retained on the column and eluted at 0.5 M NaCl. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, phorbol esters (12-O-tetradecanoylphorbol 13-acetate and phorbol 12,13-dibutyrate), and fresh fetal calf serum also induced activation of the MAP2 kinase in the quiescent TIG-3 cells. The activated MAP2 kinase activity in cells stimulated by platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, 12-O-tetradecanoylphorbol 13-acetate, phorbol 12,13-dibutyrate, or fetal calf serum was almost completely inhibited by 2 microM Ca2+, like the EGF-stimulated kinase. In addition, MAP2 phosphorylated by the kinase activated by different stimuli gave very similar phosphopeptide mapping patterns. These results suggest that several growth factors, phorbol esters, and serum activate a common, Ca2+-inhibitable protein kinase which is distinct from S6 kinase in quiescent human fibroblasts.  相似文献   

16.
Physiologic regulation of protein kinase C activity requires its interaction with cellular membranes. We have recently shown that binding of the enzyme to plasma membranes is controlled by Ca2+, whereas enzyme activators, like phorbol esters, regulate both membrane binding and enzyme activity. Here we describe the factors which control the dissociation of protein kinase C from the plasma membrane. In the absence of phorbol esters, the dissociation reaction is rapid and is determined by varying the Ca2+ concentration between 0.1 and 1 microM. However, the presence of 4-beta-phorbol 12,13-dibutyrate greatly reduces enzyme release in response to Ca2+ depletion; removal of the phorbol ester itself permits efficient membrane-enzyme dissociation. The stabilization of the membrane-protein kinase C complex by phorbol esters can be reversed by ATP with an apparent Km for the nucleotide of 6.5 microM. The ATP effect requires MgCl2 and cannot be reproduced by other nucleotides or by a nonhydrolyzable analogue, suggesting that an ATP-dependent phosphorylation reaction may be involved. 4-beta-Phorbol 12,13-dibutyrate appears to stabilize membrane-enzyme association by reducing the apparent Km for Ca2+ to about 15 nM, whereas ATP reverses the phorbol ester effect by increasing the Km for Ca2+ to about 760 nM. Furthermore, the strong degree of negative cooperativity displayed by the Ca2+-dependent enzyme-membrane dissociation is consistent with the presence of multiple interacting Ca2+-binding sites on protein kinase C.  相似文献   

17.
18.
At maximally active concentrations with 20-min exposure, insulin and phorbol myristate acetate (PMA) stimulated hexose transport in 3T3-L1 adipocytes by 11- and 2-fold, respectively. The potential role of phosphorylation of the glucose transporter (GT) in these stimulations was investigated by the isolation of GT through immunoprecipitation from ortho[32P]phosphate-labeled 3T3-L1 adipocytes. It was found that there was no significant 32P incorporation into GT from basal adipocytes after 2- or 18 h-labeling in the presence of 0.5 mCi of 32Pi/ml. Furthermore, under these labeling conditions, insulin treatment for 1, 4, or 30 min failed to stimulate the phosphorylation of GT. Also, there was no detectable phosphate incorporation into GT upon reversal of insulin-stimulated hexose transport by the removal of insulin (half-time for reversal approximately 8 min). In contrast to these results, exposure of adipocytes to PMA (1 microM) for 20 min elicited a phosphorylation of GT to the extent of about 0.1 phosphate/GT molecule. Exposure of cells to both insulin and PMA resulted in a 3-fold increase in the level of phosphate in GT compared to that seen with PMA alone. Possibly this increase is due to the translocation of GT to the plasma membrane where it is a better substrate for activated protein kinase C. Stimulation of hexose transport was the same with the combined treatment of insulin and PMA compared to that seen with insulin alone. These results indicate that neither a change in the phosphorylation state of the GT nor activation of protein kinase C is involved in the mechanism by which the insulin receptor stimulates glucose transport.  相似文献   

19.
Formation of the phosphorylated intermediate (ECaP) of the human erythrocyte Ca2+-stimulated ATPase (Ca2+-ATPase) was more rapid and reached steady state sooner at 400 microM-Ca2+ than at 1 microM-Ca2+. Calmodulin increased the apparent rate of ECaP formation at 1 microM-Ca2+, whereas at 400 microM-Ca2+, calmodulin decreased the steady-state level of the ECaP without affecting its apparent rate of formation. Removal of endogenous Mg2+ with trans-1,2-diaminocyclohexane-NNN'N'-tetra-acetic acid, which decreased both the velocity and Ca2+-sensitivity of the Ca2+-ATPase, did not alter the Ca2+-sensitivity or the apparent rate of formation of ECaP. ECaP formation at high Ca2+ concentrations was not affected by Mg2+ concentrations as high as 1 mM, and the ECaP could be dephosphorylated by ADP and ATP along either the forward or reverse pathways. The results suggest that high Ca2+ concentrations inhibit Ca2+-ATPase activity by preventing dephosphorylation of the E2P complex, rather than by inhibition of the transformation from E1CaP ('high-Ca2+-affinity' ECaP) to E2CaP ('lower-energy' ECaP).  相似文献   

20.
To identify and characterize endothelial cell surface components that bind plasminogen, we used ligand-blotting to study binding of plasminogen to sodium dodecyl sulphate solubilized extracts of human umbilical vein endothelial cells. It was observed that glu-plasminogen bound predominantly to a 45 kDa endothelial cell polypeptide. The interaction of labelled glu-plasminogen with this polypeptide was reversible and specific as the binding could be inhibited by both excess cold lysine and unlabelled glu-plasminogen but not by unrelated proteins. Binding of glu-plasminogen to cell extracts prepared from endothelial cells that had been pretreated with proteinase K was significantly reduced indicating that the 45 kDa polypeptide is a cell-surface protein. The cell-surface localization of the 45 kDa polypeptide was also indicated by the positive interaction of glu-plasminogen with membrane fractions of endothelial cells. Lys-plasminogen also interacted with the 45 kDa polypeptide in a specific manner and reversibility experiments indicated that lysplasminogen could also displace the bound glu-plasminogen. Since binding of plasminogen to the 45 kDa endothelial cell surface polypeptide was very similar to plasminogen binding to intact endothelial cells, we propose that the 45 kDa protein represents one of the major receptors for plasminogen on human endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号