首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 16 hexoses and pentoses were investigated with respect to transport intoSaccharomyces cerevisiae cells. All monosaccharides were transported across the cytoplasmic membrane but only those with an equatorial hydroxyl group in positions 1 and 4 of theC1 chair conformation and those with an equatorial hydroxyl group in position 2 and an equatorial −CH2OH group in position 5 of the1C chair conformation reached an equilibrium distribution in the entire cell water volume. Other monosaccharides reached a distribution in only 20–66% of the intracellular water. The two groups of sugars are apparently transported by different carriers (either in parallel or in series), each of them showing countertransport and an apparent activation energy of 6,700–7,800 cal/mol. The carrier transporting the perfectly distributing sugars (Group 1) is affected by uranyl nitrate but not by 2,4-dinitrophenol, the other carrier (Group 2) is apparently not susceptible to uranyl ions but is influenced by 2,4-dinitrophenol. The space of distribution of the Group 1 sugars is reduced in hypertonic media in accordance with changes of intracellular water, that of the Group 2 sugars is altered only very slightly. The carriers differ in their kinetic parametres (mobility of the loaded carriers, maximum rate of transport). There is only a very indistinct competition for transport between representatives of the two groups. Preincubation with d-galactose induces the formation or unmasking of a transport system whereafter even the Group 2 sugars reach equilibrium in the entire cell water. Part I. Fol. microbiol. 10: 30, 1965.  相似文献   

2.
Several cations inhibit anaerobic fermentation of glucose by intact yeast cells. Some ions (e.g. Hg++) penetrate into the cytoplasm and cause an irreversible inhibition of fermentation. Other ions (e.g. UO2++, Ni++, and Co++) are reversibly bound to a substance at the outside of the yeast cell identified as polyphosphate. Although the cations are bound to exactly the same extent, their influences on fermentation differ greatly. Thorium ions are bound not only to the polyphosphates, but in addition, to phosphatides in the cell membrane. Under circumstances in which glucose is transported into the cell, the amount of polyphosphate in the outer face of the membrane decreases considerably. If yeast is poisoned with monoiodoacetate, the number of glucose molecules that can still be taken up equals the original number of cation-binding sites at the outer surface of the membrane. These data suggest that one molecule of glucose is taken up in connection with the disappearance of one polyphosphate monomer. The hypothesis is framed that the uptake of glucose into the yeast cell is associated with an enzymic phosphorylation (possibly of the carrier), with polyphosphate as phosphate donor. The inhibition of glucose uptake caused by certain metal ions may be the consequence of induced changes in the spatial arrangement of polyphosphate chains; the greater the change in configuration, the larger is the inhibition.  相似文献   

3.
Depending on the growth conditionsParacoccus denitrificans synthesizes two different carriers mediating uptake of methylamine. When used as a nitrogen source, methylamine is transported via a NH 4 + carrier, and its transport is inhibited by NH 4 + but not by ethylamine. When used as a carbon source, methylamine is transported by a specific alkylamine carrier, and its transport is inhibited by ethylamine but not by NH 4 + . The NH 4 + carrier is under nitrogen control, the alkylamine carrier under carbon control.Abbreviations MA Methylamine - FCCP p-trifluormethoxycarbonylcyanide-phenylhydrazone  相似文献   

4.
Uptake of amino acids by actidione-treated yeast cells   总被引:1,自引:0,他引:1  
The active uptake ofl-aspartic acid, glycine andl-lysine by actidione-treated cells ofSaccharomyces cerevisiae was found to be inhibited by anaerobic conditions in the absence of a source of energy, only facilitated diffusion persisting. Similarly, metabolic inhibitors (iodoacetamide, sodium fluoride and potassium sorbate) inhibited the uptake very substantially. 2,4-Dinitrophenol and sodium azide appeared to inhibit the movement of the transport carrier itself, while uranyl ions showed a complex interaction pattern, ranging from inhibition at concentrations of 10?6–10?4 m, to stimulation at concentrations of 3×10?4–10?3 m, to pronounced inhibition at higher concentrations. The uptake was pH-dependent with optima forl-aspartic acid near pH 4, for glycine near pH 5, forl-lysine near pH 6.5.  相似文献   

5.
Summary The yeastRhodotorula gracilis accumulated glucuronate by an H+/symport. The transport was electroneutral, driven by the chemical gradient of protons pH. The observed stoichiometry amounted to 1 proton per molecule glucuronate. At pH 4, the half-saturation constantK T was at its lowest value (K T =8mm), whereas the maximal velocityV T reached a maximum (V T =15 nmol/min×mg dry wt). Monosaccharides competitively inhibited the uptake of glucuronate and vice versa. Hence, the two substrates share the same transport system. The steady-state accumulation of glucuronate reflected the course of the pH gradient. It is concluded that glucuronate is transported as an anionic substrate by the protonated carrier, the driving force being the chemical gradient of the H+ (pH). The ternary carrier/H+/glc-COOO-complex is electroneutral and independent of the membrane potential. Simultaneous uptake of organic acids (acetic or propionic acid) which is also energized by the pH gradient led to a noncompetitive inhibition of glucuronate transport. Thus, manipulation of the driving force, pH, reducedV T without affectingK T . Kinetic and energetic arguments are presented which stronly suggest that only the protonated carrier is catalytically active inR. gracilis.  相似文献   

6.
The effects of cations on taurine, hypotaurine and GABA uptake were studied in mouse brain slices under identical experimental conditions. The uptakes were all strictly sodium-dependent. The omission or excess of K+ inhibited similarly taurine, hypotaurine and GABA uptake. The effects of omission of Ca2+ or Mg2+ were less pronounced. In both normal-sodium and low-sodium media all uptakes were saturable, consisting of both low-and high-affinity transport components. TheK m constants for both low-and high-affinity transport components of hypotaurine and GABA increased in low-sodium medium, suggesting that sodium ions are necessary for their attachment to possible carrier sites in plasma membranes. In the case of taurine, however, the translation rate rather than the affinity of carrier sites was affected in Na+-free media. More than two sodium ions may be involved in the transport of one hypotaurine and one GABA molecule, whereas the coupling ratio between sodium and taurine was at least three. In its cation dependence hypotaurine uptake thus resembled more GABA uptake than taurine uptake.  相似文献   

7.
8.
Monensin and brefeldin A (BFA), inhibitors of Golgi-mediated protein secretion, rapidly perturb the transport catalytic activity of specific plasma membrane-associated efflux carriers for indole-3-acetic acid (IAA) and inhibit polar transport of IAA. To determine if these responses result solely from perturbation of the efflux carrier or whether specific auxin uptake carrier function is also affected, the influence of BFA on the cellular transport of a range of auxins with contrasting affinities for specific auxin uptake and efflux carriers was investigated in zucchini (Cucurbita pepo L.) hypocotyl tissue. In-flight addition of BFA (3 · 10−5 mol · dm−3) caused a rapid (lag < 10 min) and substantial (fourfold) increase in the rate of [1-14C]IAA net uptake by zucchini hypocotyl tissue. In the presence of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA; 3 · 10−6 mol · dm−3), BFA slightly reduced the rate of [1-14C]IAA net uptake. Stimulation of [1-14C]IAA net uptake by BFA was concentration-dependent. In the absence of BFA, net uptake of [1-14C]IAA exhibited the characteristic biphasic response to increasing concentrations of competing cold IAA but in the presence of BFA, [1-14C]IAA uptake decreased smoothly with increase in concentration of competing unlabelled IAA, indicating a loss of auxin efflux carrier activity but retention of functional uptake carriers. The half-time for mediated efflux of [1-14C]IAA from preloaded zucchini tissue was substantially increased by BFA (t1/2 = 51 min, controls; 107 min, BFA-treated). Treatment with BFA and/or NPA did not significantly affect the net uptake by, or efflux from, zucchini tissue of [1-14C]2,4-dichlorophenoxyacetic acid ([1-14C]2,4-D), a substrate for the auxin uptake carrier but not the auxin efflux carrier. Uptake of [1-14C]2,4-D declined smoothly with increasing concentrations of competing unlabelled IAA whether or not BFA was included in the uptake medium, confirming the failure of BFA to perturb auxin uptake carrier function. Transport of 1-[4-3H]naphthaleneacetic acid (1-NAA) exhibited little response to BFA or NPA, confirming that it is only a weakly transported substrate for the efflux carrier in zucchini cells. Received: 12 November 1997 / Accepted: 27 January 1998  相似文献   

9.
Zygosaccharomyces bailii possesses a constitutive malic enzyme, but only small amounts of malate are decomposed when the cells ferment fructose. Cells growing anaerobically on glucose (glucose cells) decompose malate, whereas fructose cells do not. Only glucose cells show an increase in the intracellular concentration of malate when suspended in a malate-containing solution. The transport system for malate is induced by glucose, but it is repressed by fructose. The synthesis of this transport system is inhibited by cycloheximide. Of the two enantiomers l-malate is transported preferentially. The transport of malate by induced cells is not only inhibited by addition of fructose but also inactivated. This inactivation is independent of the presence of cycloheximide. The transport of malate is inhibited by uranyl ions; various other inhibitors of transport and phosphorylation were of little influence. It is assumed that the inducible protein carrier for malate operates by facilitated diffusion. Fructose cells of Z. bailii and cells of Saccharomyces cerevisiae do not contain a transport system for malate.This research was supported in part by a grant from the Forschungsring des Deutschen Weinbaus.  相似文献   

10.
Measurements of water proton spin relaxation enhancements (ε) can be used to discriminate high-affinity binding of Mn2+ or Gd3+ to biological membranes, from low-affinity binding. In rat liver mitochondria, εb values of approx. 11 are observed upon binding of Mn2+ to the inner membrane, while internal or low-affinity binding remains invisible to this technique. Energy-driven Mn2+ uptake by liver mitochondria results in the subsequent decay of ε1.Comparison of ε1 with the initial velocity of Mn2+ uptake in rat liver mitochondria reveals a linear correlation, which holds at all temperatures between 0 °C and 40 °C, regardless of the mitochondrial protein concentration. Consequently, enhancement appears to reflect the binding of Mn2+ to the divalent cation pump.Binding of Mn2+ to blowfly flight muscle also results in substantial ε1, which is associated with the glycerol-1-phosphate dehydrogenase instead of divalent cation transport. Consequently, no decay in ε1 due to uptake occurs after Mn2+ is bound.Lanthanide ions are also bound and transported by mitochondria. Addition of Gd3+ to pigeon heart or rat liver mitochondria results in εb ≈ 5–6, which decays with similar kinetics in both systems. The uptake velocity of Gd3+ in rat liver mitochondria is about 16 the rate with which Mn2+ is transported. Lanthanides also diminish ε1 due to the addition of Mn2+, and greatly retard the Mn2+ uptake kinetics. The presence of carbonylcyanide-p-trifluoromethoxyphenylhydrazone depresses ε1 upon addition of Mn2+ or Gd3+ and also uncouples energy-driven uptake. On the other hand, prolonged anaerobic incubation in the presence of antimycin and rotenone exhausts the mitochondria of their energy stores, blocks the uptake of Mn2+, but does not affect ε1 significantly. Evidently, the uncoupler-induced disappearance of divalent cation binding sites is not the result of “de-energization”.Measurements of ε1 at several NMR frequencies indicate a correlation time (τb) for carrier-bound Mn2+ in rat liver mitochondria between 20 ns and 4 ns as one varies the temperature between 10 °C and 30 °C. The 13 Kcal/mole activation energy for τb suggests that the 11 ns time constant at room temperature represents the movement of the MnII-carrier complex. On the other hand, τb is probably approx. 100 times too short to represent the rotational motion of a carrier protein. Apparently, Mn2+ binds to a small arm of the carrier which moves independently of the main body of any protein.In addition to Mn(H2O)62+, other complexes of Mn2+ may also be bound and transported by rat liver mitochondria. Only a small increase in ε1 occurs upon addition of MnHPO4, yet this species is accumulated by the mitochondria. Consequently, the carrier does not recognize divalent metal ions on the basis of charge.  相似文献   

11.
It has been found (1) that glucosides with a long alkyl chain (2–18 carbon atoms) as the aglycone can be transported by carrier-mediated processes in the hamster small intestine in vitro, (2) that these glucosides interact with the glucose carrier, and (3) that they compete with glucose and analogs for the binding to the carrier. There are Na+- and phlorizin-insensitive components of uptake for the long chain alkyl glucosides which suggest additional interactions or uptake processes.  相似文献   

12.
The uptake of L-[3H]DABA by rat cerebral cortex slices was studied. Analysis of the kinetic data obtained provides evidence that DABA entry is mediated by both high and low affinity carriers. When cortical slices were incubated in the presence of equimolar [3H]DABA and [14C]GABA the ratio of entry of the two radionuclides was found to depend upon the loading concentration. The specificity of the uptake of 1 μM and 1 mM-L-DABA was examined: GABA and DABA were relatively potent inhibitors of 1 μM-DABA uptake whereas an equal concentration of histidine did not produce significant inhibition. In contrast, DABA and histidine were markedly more potent as inhibitors of 1 mM-DABA uptake than was GABA. It is concluded from these experiments that L-DABA is transported into cortical slices by a carrier which has high affinities for both DABA and GABA and by a second lower affinity carrier which prefers DABA as a substrate to GABA. On the basis of a comparison of the effects of inhibitors on [3H]DABA and [3H]GABA uptake it is estimated that approx 26% of DABA uptake at 1 μM does not occur by the high affinity carrier whereas at 1 mM-DABA this proportion rises to 62–67%.  相似文献   

13.
Summary Internal Cl and low internal pH are strong inhibitors of Cl influx at the plasma membrane ofChara. The present investigation seeks to understand the mechanism by which this is achieved. Since both Cl and H+ are transported by the same system, one possible mechanism is simply through a change in the electrochemical gradients of these ions. However, it is found that transport is more sensitive to theinternal concentrations of the two ions than to their respective gradients. It is demonstrated that Cl influx, which shows Michaelis-Menten kinetics with respect to external concentration, is affected only in itsV max by internal Cl and pH; the apparentK m of the transport system for external Cl is unchanged. In addition, it is found that there is an apparent interaction between internal Cl and pH in their effects on Cl influx, both in intact cells and those that have been perfused internally. A kinetic model is proposed which can account quantitatively for all these observations simply through the effects of substrate concentration on the apparent rate constants of a recycling carrier. The model predicts (i) strictly ordered binding of Cl and H+ to the carrier at both internal and external surfaces, with Cl first on and first off (ii) movement of charge through the membrane on the loaded, rather than the unloaded, carrier. The present model is expected to account for similar kinetic observations from a variety of other cotransport systems.  相似文献   

14.
Malate uptake was investigated with vacuoles isolated from Catharanthus roseus cells. The uptake process showed saturation kinetics, was inhibited by organic anions, and was very strongly dependent on the pH of the medium. These data support the classical concept of an anion carrier or channel mechanism and suggest that the Hmal? form was the transported species. Moreover, malate transport was stimulated by the proton gradient across the tonoplast. The H+ translocating enzymes ATPase and PPiase are able to favour malate uptake and, in combination, exert a synergistic effect on this transfer.  相似文献   

15.
K+ is a competitive inhibitor of the uptake of the other alkali metal cations by yeast. Rb+ is a competitive inhibitor of K+ uptake, but Li+, Na+, and Cs+ act like H+. At relatively low concentrations they behave as apparent noncompetitive inhibitors of K+ transport, but the inhibition is incomplete. At higher concentrations they inhibit the remaining K+ transport competitively. Ca++ and Mg++ in relatively low concentrations partially inhibit K+ transport in an apparently noncompetitive manner although their affinity for the transport site is very low. In each case, in concentrations that produce "noncompetitive" inhibition, very little of the inhibiting cation is transported into the cell. Competitive inhibition is accompanied by appreciable uptake of the inhibiting cation. The apparently noncompetitive effect of other cations is reversed by K+ concentrations much higher than those necessary to essentially "saturate" the transport system. A model is proposed which can account for the inhibition kinetics. This model is based on two cation-binding sites for which cations compete, a carrier or transporting site, and a second nontransporting (modifier) site with a different array of affinities for cations. The association of certain cations with the modifier site leads to a reduction in the turnover of the carrier, the degree of reduction depending on the cation bound to the modifier site and on the cation being transported.  相似文献   

16.
Mechanisms of citrate transport and exchange in corn mitochondria   总被引:2,自引:2,他引:0  
Previous work (Birnberg, Jayroe, Hanson 1982 Plant Physiol 70: 511-516) demonstrated that corn mitochondria (Zea mays L.) can accumulate citrate by a malate- and phosphate-independent proton symporter. This uptake and symport of other ions were investigated. Passive swelling experiments indicated that corn mitochondria can accumulate several other anions by proton symport, but only isocitrate is taken up nearly as effectively as citrate. At the optimal pH (4.5), active uptake of carrier-free [14C]citrate in 50 micromolar mersalyl is inhibited by fourteen anions, but only the I50 (the concentration of inhibitor required to reduce uptake of carrier-free [14C]citrate by 50%) values of citrate (0.08 millimolar) and d-and l-isocitrate (0.5 millimolar) are less than 4 millimolar. Isocitrate is a competitive inhibitor of citrate uptake and [14C]isocitrate is accumulated with a Km similar similar to its I50. Valinomycin reduces net active citrate accumulation at pH 7.5, consistent with the relatively low Vmax for citrate uptake. At pH 4.5, mersalyl reduces the rate of citrate uptake without changing the affinity of the carrier for citrate. Thus, the corn mitochondria have a high-affinity, mersalyl-insensitive carrier selective for citrate that also transports isocitrate.  相似文献   

17.
The cation requirements of [3H]taurine and [35S]hypotaurine uptake by cultured neuroblastoma C1300 cells were compared in Krebs-Ringer-Hepes-glucose medium. The uptakes were strictly sodium-dependent at both low and high taurine and hypotaurine concentrations. The omission of Ca2+ or Mg2+ ions affected uptakes only marginally. The optimal K+ concentration was equal to the physiological concentration, whereas abnormally high K+ levels inhibited similarly taurine and hypotaurine uptake. The sodium dependence curves of both uptakes were sigmoidal in character at low and high taurine and hypotaurine concentrations. Hill plots suggest that two Na+ ions are coupled with the transfer of one taurine or hypotaurine molecule into neuroblastoma cells. With respect to cation requirements taurine and hypotaurine transports are similar in cultured neuroblastoma cells and display features considered typical of the uptake of a neurotransmitter amino acid.  相似文献   

18.
The cellular uptake of the GABA-transaminase inhibitors gamma-vinyl GABA (GVG) and gamma-acetylenic GABA (GAG) was studied in cultured neurons and astrocytes. By the use of the individual enantiomersR- andS-GVG andR- andS-GAG it could be shown that in both cell types only theS-enantiomers could be actively transported. Comparing neurons and astrocytes only neurons exhibited a high affinity uptake system forS-GVG (K m 78.2±20.3 M;V max 0.71±0.06 nmol · min–1 · mg–1 cell protein). In case ofS-GAG it could not be established with certainty whether the neuronal uptake was of the high affinity type. Both GVG and GAG were studied as inhibitors of GABA uptake into neurons and astrocytes.S-GVG andS-GAG were found to be weak inhibitors of GABA uptake suggesting thatS-GVG is not transported by the GABA carrier in neurons. The finding of a much more efficient uptake ofS-GVG into neurons than into astrocytes is in line with the previous observation that neuronal GABA-T is more sensitive than astrocytic GABA-T toS-GVG.  相似文献   

19.
Silberbush  M.  Ben-Asher  J. 《Plant and Soil》2001,233(1):59-69
Soilless plant growth systems are widely used as a means to save irrigation water and to reduce groundwater contamination. While nutrient concentrations in the growth medium are depleted due to uptake by the plants, salinity and toxic substances accumulate due to transpiration. A theoretical model is suggested, to simulate nutrient uptake by plants grown in soilless cultures with recycled solutions. The model accounts for salinity accumulation with time and plant growth, and its effects on uptake of the different nutrients by means of interaction with Na and Cl ions. The sink term occurs due to uptake by a growing root system. Influx as a function of the ion concentration is according to Michaelis–Menten active mechanisms for K+, NO3 -N, NH4 +-N, PO4-P, Ca2+, Mg2+ and SO4 2-, whose influx parameters are affected by Na and Cl, but not with time (age). Sodium influx is passive above a critical concentration. Sum of cations–anions concentrations is balanced by Cl to maintain electro-neutrality of the growth solution. Salinity (by means of Na concentration) suppresses root and leaf growth, which further effect uptake and transpiration. The model accounts for instantaneous transpiration losses, during daytime only and its effect on uptake of nutrients and plant development due to salt accumulation. The model was tested against NO3 and K+ uptake by plants associated with cumulative transpiration and with different NaCl salinity levels. Deviations from observed K+ uptake should be attributed to the salinity tolerance of the plants. In a study with data obtained from published literature, the model indicated that nutrient depletion and salinity buildup might be completely different with fully grown-up plants (that do not grow) and plants that grow with time. Depletion of different nutrients are according to their initial concentration and plant uptake rate, but also affected by their interactions with Na and Cl ions.  相似文献   

20.
Sorbitol was transported actively into vacuoles isolated fromapple (Malus pumilla Mill, var domestica Schneid.) fruit flesh.The uptake was stimulated up to twofold by the addition of ATP,and the ATP dependent uptake showed a saturation curve as tothe substrate concentration. The optimum uptake of sorbitolwas pursued in the acidic range of pH 5 to 6. The Km value forthe ATP dependent sorbitol uptake was about 5 mM. Sorbitol uptake was clearly inhibited by PCMB and uncouplers(CCCP and DCCD), and to a lesser extent by orthovanadate, butonly slightly by oligomycin. K+ stimulated sorbitol uptake.Sorbitol was converted to other sugars (glucose) only very slowlywhen transported across the tonoplast. This suggests that sorbitolis transported into vacuoles by a carrier mediated transportsystem coupled with H+- ATPase, localized on the tonoplast.Sucrose uptake into the vacuoles was also enhanced by ATP. (Received May 31, 1986; Accepted March 2, 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号