首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidate phosphatase (EC 3.1.3.4Y was purified 15- to 20-fold from the soluble fraction of rat liver. The purification procedure involved calcium phosphate gel adsorption and elution, ammonium sulfact precipitation, and molecular-sieve chromatography. For the enzyme assay, and aqueous dispersion of phosphatidate, rather than "membrane-bound" phosphatidate, was used as substrate. The partially purified enzyme depends almost entirely on the presence of Mg2+ for its activity. Morover, the activity of the enzyme is stimulated by phosphatidylcholine. The enzyme exhibits a high substrate specificity for phosphatidate. The apparent Km for phosphatidate is approximately 0.05 mM. The optimum pH is between 7.4 and 7.6. The enzyme is inhibited by fluoride and by p-chloromercuribenzoate. The subcellular distribution of phosphatidate phosphatase in rat liver was studied by assaying the activity of the enzyme in the presence of Mg2+ and phosphatidylcholine. In contrast ot the results of previous studies, most of the enzyme activity was found in the soluble fraction.  相似文献   

2.
The serum fraction of latex from Hevea brasiliensis, the para rubber tree, is known to contain an endo-chitinolytic enzyme, hevamine. Herein the activity of the rubber serum towards beta-chitin is investigated. The serum contained 6 mg/mL of protein and a chitinolytic activity of 18 mU permg of protein. The optimum ratio of enzyme to chitin was 0.22 mU/mg, and the optimum substrate concentration was 60 mg/mL. The optimum pH range was pH2-4, and the optimum temperature was 45 degrees C. At these conditions both (GlcNAc)2 and GlcNAc were produced in a molar ratio of approximately 2:1. The hydrolysis of 300 mg of chitin with 64 mU of the rubber serum for 8 days under the optimum conditions gave 39 mg of GlcNAc and 108 mg of (GlcNAc)2 as determined by HPLC. Mixing the rubber serum preparation with an Aspergillus niger pectinase preparation containing beta-N-acetylhexosaminidase can be used to produce almost exclusively the GlcNAc monomer in about 50% yield.  相似文献   

3.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

4.
The DNA polymerase from the Mason-Pfizer monkey virus (M-PMV), an RNA tumor virus not typical type-C or type-B, has been purified a thousand-fold over the original crude viral suspension. This purified enzyme is compared to a similarly purified DNA polymerase from the primate woolly monkey virus, a type-C virus. The two enzymes have similar template specificities but differ in their requirements for optimum activity. Both DNA polymerases have a pH optimum of 7.3 in Tris buffer. M-PMV enzyme has maximum activity with 5 mM Mg(2+) and 40 mM potassium chloride, whereas the woolly monkey virus optima are 100 mM potassium chloride with 0.8 mM Mn(2+). The apparent molecular weight of the M-PMV enzyme is approximately 110,000, whereas the woolly monkey virus polymerase is approximately 70,000. The biochemical properties of these two enzymes were also compared to a similarly purified enzyme from a type-C virus from a lower mammal (Rauscher murine leukemia virus). The results show that more similarity exists between the DNA polymerases from viruses of the same type (type-C), than between the polymerases from viruses of different types but from closely related species.  相似文献   

5.
Thermotoga maritima is the most thermophilic eubacterium currently known and grows up to 90 degrees C by a fermentative metabolism in which H2, CO2, and organic acids are end products. It was shown that the production of H2 is catalyzed by a single hydrogenase located in the cytoplasm. The addition of tungsten to the growth medium was found to increase both the cellular concentration of the hydrogenase and its in vitro catalytic activity by up to 10-fold, but the purified enzyme did not contain tungsten. It is a homotetramer of Mr 280,000 and contains approximately 20 atoms of Fe and 18 atoms of acid-labile sulfide/monomer. Other transition metals, including nickel (and also selenium), were present in only trace amounts (less than 0.1 atoms/monomer). The hydrogenase was unstable at both 4 and 23 degrees C, even under anaerobic conditions, but no activity was lost in anaerobic buffer containing glycerol and dithiothreitol. Under these conditions the enzyme was also quite thermostable (t50% approximately 1 h at 90 degrees C) but extremely sensitive to irreversible inactivation by O2 (t50% approximately 10 s in air). The optimum pH ranges for H2 evolution and H2 oxidation were 8.6-9.5 and greater than or equal to 10.4, respectively, and the optimum temperature for catalytic activity was above 95 degrees C. In contrast to mesophilic Fe hydrogenases, the T. maritima enzyme had very low H2 evolution activity, did not use T. maritima ferredoxin as an electron donor for H2 evolution, was inhibited by acetylene but not by nitrite, and exhibited EPR signals typical of [2Fe-2S]1+ clusters. Moreover, the oxidized enzyme did not exhibit the rhombic EPR signal that is characteristic of the catalytic iron-sulfur cluster of mesophilic Fe hydrogenases. These data suggest that T. maritima hydrogenase has a different FeS site and/or mechanism for catalyzing H2 production. The potential role of tungsten in regulating the activity of this enzyme is discussed.  相似文献   

6.
A Chien  D B Edgar    J M Trela 《Journal of bacteriology》1976,127(3):1550-1557
A stable deoxyribonucleic acid (DNA) polymerase (EC 2.7.7.7) with a temperature optimum of 80 degrees C has been purified from the extreme thermophile Thermus aquaticus. The enzyme is free from phosphomonoesterase, phosphodiesterase and single-stranded exonuclease activities. Maximal activity of the enzyme requires all four deoxyribonucleotides and activated calf thymus DNA. An absolute requirement for divalent cation cofactor was satisfied by Mg2+ or to a lesser extent by Mn2+. Monovalent cations at concentrations as high as 0.1 M did not show a significant inhibitory effect. The pH optimum was 8.0 in tris(hydroxymethyl)aminomethane-hydrochloride buffer. The molecular weight of the enzyme was estimated by sucrose gradient centrifugation and gel filtrations on Sephadex G-100 to be approximately 63,000 to 68,000. The elevated temperature requirement, small size, and lack of nuclease activity distinguish this polymerase from the DNA polymerase of Escherichia coli.  相似文献   

7.
1. Kynurenine-2-oxoglutarate aminotransferase (isoenzyme 1) was purified to homogeneity from the liver, brain and small intestine of rats by the same procedure. The three enzyme preparations had nearly identical pH optima, substrate specificities and molecular weights. Isoenzyme 1 was active with 2-oxoglutarate but not with pyruvate as amino acceptor, and utilized a wide range of amino acids as amino donors. Amino acids were effective in the following order to activity: L-aspartate greater than L-tyrosine greater than L-phenylalanine greater than L-tryptophan greater than 5-hydroxy-L-tryptophan greater than L-kynurenine. The molecular weight was approximately 88 000 as determined by sucrose-density-gradient centrifugation. The pH optimum was between 8.0 and 8.5. On the basis of substrate specificity, substrate inhibition, subcellular distribution and polyacrylamide-disc-gel electrophoresis, it is suggested that liver, brain and small intestinal kynurenine-2-oxoglutarate aminotransferase (isoenzyme 1) is identical with mitochondrial tyrosine-2-oxoglutarate aminotransferase and also with mitochondrial aspartate-2-oxoglutarate aminotransferase. 2. An additional kynurenine-2-oxoglutarate aminotransferase (isoenzyme 2) was purified from the liver. This enzyme was specific for 2-oxoglutarate and L-kynurenine. Sucrose-density-gradient centrifugation gave a molecular weight of approximately 100 000. The pH optimum was between 6.0 and 6.5. This enzyme was not detected in the brain or small intestine.  相似文献   

8.
Cyclic nucleotide phosphodiesterase from wheat sprouts was isolated and partially purified. The molecular weight of the enzyme is about 83 000. The enzyme activity sharply rises as the inhibiting factors present in the homogenate are separated. The pH optimum of the enzymatic reaction is 4,8. Divalent cations (Mg2+, Mn2+, Cu2+) within the concentration range of 1--5 mM and complexons (EDTA, EGTA) at the concentration of 1 mM do not affect the PDE activity. The temperature optimum for the reaction is 60 degrees. The enzyme hydrolyzes 3' : 5'-AMP, 3' : 5'-GMP and 2':3'-AMP. The Km value for cAMP is 4 . 10(-3) M. The enzyme activity is inhibited by chemical agents possessing the fungicide activity, the strongest effect being exerted by anylate.  相似文献   

9.
The production of a rennin-like enzyme by Byssochlamys fulva varied considerably with the isolates tested. Among the seven isolates tested, NRRL 2260, IMI 83277, and N.Y. 1 were good enzyme producers. The enzyme produced by isolate IMI 83277 was purified approximately 20-fold after (NH(4))(2)SO(4) precipitation, diethylaminoethyl-cellulose chromatography and Sephadex G-100 gel filtration. The partially purified enzyme has a pH optimum at 2.9 and a temperature optimum around 60 C. The enzyme appeared to be relatively stable at 40 C between pH 3.0 and pH 6.85. A name, byssochlamyopeptidase A, was proposed for this new enzyme. The milk-clotting activity of byssochlamyo-peptidase A is dependent on pH and appeared to be minimal at pH 6.2 or above. No extensive proteolysis has been observed during the milk-clotting process. The non-trichloroacetic acid-precipitable nitrogen titration curve on skim milk was comparable to that catalyzed by animal rennet.  相似文献   

10.
Plasmodium berghei-infected murine red cells possess protein kinase activity that is associated with the isolated parasites. Schizonts contain significantly higher levels of this protein kinase than the more immature forms, suggesting a relationship between this enzyme activity and parasite development. Partially purified protein kinase has a Km for ATP of approximately 30 microMs, whereas the Km for GTP is approximately 300 microMs and the substrate preference is phosvitin greater than casein much greater than histone greater than protamine. The Mg2+ optimum is 10-20 mM, and the protein kinase activity is stimulated by the polyamines spermine and spermidine. The flavone, quercetin, inhibits the protein kinase activity in a competitive manner with respect to ATP (Ki approximately 3 microMs), and P chabaudi also has a very similarly regulated protein kinase. Protein kinases from both species are very similar to the type I casein kinase.  相似文献   

11.
The gene encoding Aquifex pyrophilus (Apy) pyrophosphatase was cloned and sequenced. The deduced amino acid sequence of Apy pyrophosphatase showed a 94.2% homology to Aquifex aeolicus (Aae) pyrophosphatase. The gene exhibits a difference in the codon usage at the third position from Aae pyrophosphatase. The gene was expressed under the control of a tac promoter in E. coli. The recombinant Apy pyrophosphatase was purified 18.7-fold with a 52.8% yield and a specific activity of 26.2 U mg(-1) protein. The native enzyme has a homotetramer of 177 amino acids. The enzyme shows optimal activity in pH 7.5. The optimum temperature was approximately 70 degrees C. A divalent cation was absolutely required for the enzyme activity; Mg2+ was the most effective.  相似文献   

12.
Evidence is presented for the presence of both diethylstilbestrol (DES)-sensitive and DES-insensitive Mg2+-ATPase activities in plasma membrane enriched fractions of Dictyostelium discoideum. When removed from the membrane, the DES-sensitive activity is markedly less stable than the DES-insensitive activity, and the two activities display a number of quite distinct properties. The DES-sensitive enzyme has a decided preference for Mg2+ over Ca2+, displays saturation kinetics in response to ATP as substrate (Km = 0.2 mM) and has a narrow pH optimum range. In contrast, the DES-insensitive activity is stimulated equally by Mg2+ or Ca2+, is not saturable by ATP within the mM concentration range and has a much broader pH optimum. The DES-insensitive activity has been purified extensively. The purified enzyme is inhibited by vanadate and fluoride, but is insensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide and thimerosal. In the absence of divalent cations, the enzyme displays a sigmoidal activity curve in response to substrate concentration, which is abolished by addition of either Mg2+ or Ca2+, suggesting a binding site for a divalent cation and a positive cooperative interaction. The enzyme is capable of hydrolyzing other nucleotide triphosphates and ADP, but is without activity on AMP, p-nitrophenyl phosphate and pyrophosphate. The enzyme has an apparent molecular weight of approximately 64,000.  相似文献   

13.
Collagenase from the internal organs of a mackerel was purified using acetone precipitation, ion-exchange chromatography on a DEAE-Sephadex A-50, gel filtration chromatography on a Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel, and gel filtration chromatography on a Sephadex G-75 column. The molecular mass of the purified enzyme was estimated to be 14.8 kDa by gel filtration and SDS-PAGE. The purification and yield were 39.5-fold and 0.1% when compared to those in the starting-crude extract. The optimum pH and temperature for the enzyme activity were around pH 7.5 and 55 degrees, respectively. The K(m) and V(max) of the enzyme for collagen Type I were approximately 1.1mM and 2,343 U, respectively. The purified enzyme was strongly inhibited by Hg2+, Zn2+, PMSF, TLCK, and the soybean-trypsin inhibitor.  相似文献   

14.
A specific trehalose phosphate phosphatase was purified approximately 50-fold from Mycobacterium smegmatis. The enzyme had a pH optimum of about 7.0 and was stimulated by Mg(2+). The optimum concentration of Mg(2+) was about 1.5 x 10(-3)m. Of other divalent cations tested, only Co(2+) showed some activity. The K(m) for trehalose phosphate was found to be about 1.5 x 10(-3)m. The enzyme showed slight activity toward mannose-6-P and fructose-6-P but was inactive on a large number of other phosphorylated compounds. Citrate was a competitive inhibitor of the enzyme both with respect to trehalose phosphate concentration and Mg(2+) concentration. This inhibition appears to be due to chelation of Mg(2+) by this compound. Ethylenediaminetetraacetic acid and NaF were also inhibitors of the enzyme, but these inhibitions were noncompetitive.  相似文献   

15.
1. A Ca(2+)-dependent cysteine proteinase was purified from scallop striated adductor muscle by ammonium sulfate fractionation and column chromatography on DEAE-cellulose and Sephacryl S-300. 2. The enzyme is of Mr approximately 200,000, composed of two Mr 100,000 subunits. 3. The enzyme is a cysteine proteinase with optimum activity at pH 6.8 and about 18 degrees C. In addition, it requires 1.7 mM Ca2+ for half-maximal activity and more than 10 mM Ca2+ for maximal activity. Thus the enzyme can be classified as calpain II.  相似文献   

16.
A protease that nicks the approximately 150-kilodalton (kDa) single-chain type A botulinum neurotoxin into the approximately 150-kDa di-chain form in vitro was isolated from Clostridium botulinum type A (Hall strain) cultures. The di-chain neurotoxin generated in vitro is composed of an approximately 50-kDa light chain and an approximately 100-kDa heavy chain which are disulfide linked and is indistinguishable from the di-chain neurotoxin that forms in vivo and is routinely isolated (M.L. Dekleva and B.R. DasGupta, Biochem. Biophys. Res. Commun. 162:767-772, 1989). This enzyme was purified greater than 1,000-fold by ammonium sulfate precipitation, QAE-Sephadex Q-50, Sephadex G-100, and CM-Sephadex C-50 chromatography steps with the synthetic substrate N-benzoyl-DL-arginine-p-nitroanilide. The approximately 62-kDa amidase (protease) is a complex of 15.5- and 48-kDa polypeptides (determined by polyacrylamide gel electrophoresis) that could not be separated without sodium dodecyl sulfate. The enzyme has an isoelectric point of pH 5.73, a pH optimum of 6.2 to 6.4, an absolute requirement for a thiol-reducing agent as well as a divalent metallic cation (probably Ca2+) for activity, and a temperature optimum of 70 degrees C. Tests with several synthetic substrates indicated the high specificity of the enzyme for arginyl amide bonds.  相似文献   

17.
Three components (GA, GB-1, and GB-2) of beta-glucosidase were detected in the culture filtrate of Pyricularia oryzae grown in a cellulose or cellulose derivative medium. Among them, GB-1 was induced most strongly. Purified GB-1 was homogeneous on polyacrylamide gel electrophoresis and showed an approximately 1,400-fold increase of specific activity over the starting material. The molecular weight was determined to be 240,000 by sodium dodecyl sulfate-gel electrophoresis. A similar value was also obtained by sucrose density gradient centrifugation. The enzyme contained a high proportion of acidic amino acids and mannose, and the isoelectric point of the enzyme was pH 4.15. The enzyme had a pH optimum of 5.5 and a temperature optimum at 55 degrees C. beta-Glucosidase activity was inhibited by Mn2+, Cu2+, Hg2+, p-chloromercuribenzoate, and glucono-delta-lactone. The enzyme split off glucose units one by one from the nonreducing ends of not only beta-glucooligosaccharides but also some beta-glucans, such as carboxymethylcellulose, laminaran, pustulan, and zeagallan. The affinity for cello- and laminari-oligosaccharides tended to increase in parallel with the chain length.  相似文献   

18.
In human liver, almost 90% of malic enzyme activity is located within the extramitochondrial compartment, and only approximately 10% in the mitochondrial fraction. Extramitochondrial malic enzyme has been isolated from the post-mitochondrial supernatant of human liver by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, ADP-Sepharose-4B and Sephacryl S-300 to apparent homogeneity, as judged from polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was 56 mumol.min-1.mg protein-1, which corresponds to about 10,000-fold purification. The molecular mass of the native enzyme determined by gel filtration is 251 kDa. SDS/polyacrylamide gel electrophoresis showed one polypeptide band of molecular mass 63 kDa. Thus, it appears that the native protein is a tetramer composed of identical-molecular-mass subunits. The isoelectric point of the isolated enzyme was 5.65. The enzyme was shown to carboxylate pyruvate with at least the same rate as the forward reaction. The optimum pH for the carboxylation reaction was at pH 7.25 and that for the NADP-linked decarboxylation reaction varied with malate concentration. The Km values determined at pH 7.2 for malate and NADP were 120 microM and 9.2 microM, respectively. The Km values for pyruvate, NADPH and bicarbonate were 5.9 mM, 5.3 microM and 27.9 mM, respectively. The enzyme converted malate to pyruvate (at optimum pH 6.4) in the presence of 10 mM NAD at approximately 40% of the maximum rate with NADP. The Km values for malate and NAD were 0.96 mM and 4.6 mM, respectively. NAD-dependent decarboxylation reaction was not reversible. The purified human liver malic enzyme catalyzed decarboxylation of oxaloacetate and NADPH-linked reduction of pyruvate at about 1.3% and 5.4% of the maximum rate of NADP-linked oxidative decarboxylation of malate, respectively. The results indicate that malic enzyme from human liver exhibits similar properties to the enzyme from animal liver.  相似文献   

19.
We have fractionated from extracts of Bacillus subtilis the DNase activity specific for single-stranded DNA; the activity separates in two main fractions on Sephadex G-200, a larger one (Mr greater than 400 000) and a smaller one (Mr approximately 30 000). We have purified the smaller, more abundant fraction nearly 3000-fold. The purified enzyme has a pH optimum close to 8, is activated by Ca2+, and is inhibited by EDTA; the enzyme hydrolyses single-stranded DNA at a rate approximately 40 times greater than double-stranded DNA. The mode of action is endonucleolytic on both substrates, but the possiblility that the two activities may reside on different molecules is not ruled out. The products have 5'-P and 3'-OH ends. The enzyme is different from those purified from the culture media of the same organism in several respects; the latter are all extracellular enzymes, they are not specific for single-stranded DNA (except one) and have all an exonucleolytic mode of action.  相似文献   

20.
D E Stevenson  M Akhtar  D Gani 《Biochemistry》1990,29(33):7631-7647
L-Methionine decarboxylase from the male fern Dryopteris filix-mas has been purified 256-fold from acetone powder extracts to very near homogeneity. The enzyme is membrane-associated and requires detergent for solubilization during the initial extraction. The enzyme is a homodimer of subunit Mr 57,000 and shows a pH optimum at approximately 5.0 with 20 mM (2S)-methionine as substrate. The specific activity, kcat, for methionine is approximately 50 mol s(-1) (mol of active site)(-1) at pH 4.5 and below. A wide range of straight- and branched-chain (2S)-alkylamino acids are substrates for the enzyme. The values for the rate of decarboxylation, Vmax, and for the apparent Michaelis constant, Km, however, vary with structure and with the chirality at C-3. The pH dependence of V and V/K has been examined for three substrates: (2S)-methionine, valine, and leucine. Pyridoxal 5'-phosphate (PLP) is required for activity, and in the absence of excess PLP, the activity of the enzyme in incubations reduced with respect to time. The addition of PLP fully restores the activity, indicating that an abortive decarboxylation-transamination accompanies the normal decarboxylation reaction. The occurrence of the abortive reaction was confirmed by showing that [35S]methionine is converted to labeled 3-(methylthio)propionaldehyde while [4'-3H]PLP is converted to labeled pyridoxamine 5'-phosphate (PMP). The decarboxylation of (2S)-methionine gave 3-(methylthio)-1-aminopropane. Preparation of the N-camphanamide derivative of the amine allowed the C-1 methylene protons to be distinguished by 1H NMR spectroscopy. Synthetic samples of the camphanamide were prepared in which each of the C-1 methylene protons was replaced by deuterium. When (2S)-methionine and the C-2 deuteriated isotopomer were incubated with the enzyme in deuterium oxide and protium oxide, respectively, and the products were converted to their camphanamide derivatives and analyzed by 1H NMR spectroscopy, it was evident that decarboxylation occurred with retention of configuration at C-2. When the decarboxylation of six other substrates was studied, examination of the N-camphanamide derivatives of the amines indicated that decarboxylation occurred stereospecifically and, by analogy, with retention of configuration at C-2. When tritiated pyridoxal phosphate was incubated with the enzyme, tritiated pyridoxamine phosphate was formed. Analysis of the chirality of the methylene group at C-4' indicated that, during abortive transamination, protonation occurred from the 4'-si face of the coenzyme, the same stereochemical result as that obtained for several bona fide transaminase enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号