首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
'Sideshootless,’ a mutant strain of tomato which does not produce axillary buds during vegetative growth, was compared with normally branching plants in order to study the nature of development particularly with regard to axillary buds. Sectioned material revealed no indication of axillary bud initiation in the sideshootless plant at any time during the vegetative phase of growth. In the normal plants, buds were noted to arise in the axil of the fifth youngest leaf. The buds take their origin in tissue which is in direct continuity with the apical meristem. The bud primordia later become set apart from the apex as vacuolation takes place in the surrounding tissue. At the time of floral initiation, the mutant and normal strains behave similarly. Axillary buds appear in the axils of the 2 leaves immediately below the floral apex. One of the buds elongates to overtop the existing plant axis; the other develops as a typical sidebranch. The inflorescence is pushed aside in the process. This pattern is repeated with each inflorescence; thus an axis composed of several superimposed laterals results.  相似文献   

2.
Plastochronic changes in the vegetative shoot apex and originand development of axillary and accessory buds are studied. The flat shoot apex shows structural and dimensional changesin a plastochron. They are described in three phases, the pre-leafinitiation, the leaf initiation, and the post-leaf initiation.The youngest axillary bud meristem is identified near the axilat the second node when the subtending leaf primordium is 200–12µ long. The corpus of the bud meristem has a more activerole in bud development than has the tunica layers. The shellzone associated with a young bud meristem persists until thebud has attained the structural and functional attributes ofthe main shoot apex. It loses its histological identity by producingderivatives which merge with the ground tissue and procambialcells of bud traces. In a developing bud the provascular systemof the bud appears as an arc, a loop, or as a ring in transversesections at different levels. These configurations are composedof anastomosing procambial strands of bud trace and residualmeristem, both being differentiated from developing bud meristem.  相似文献   

3.
Tucker, Shirley C. (Northwestern U., Evanston, III.) Development and phyllotaxis of the vegetative axillary bud of Michelia fuscata . Amer. Jour. Bot. 50(7): 661–668. Illus. 1963.—The vegetative axillary buds of Michelia fuscala are dorsiventrally symmetrical with 2 ranks of alternately produced leaves. The direction of the ontogenetic spiral in each of these buds is related both to the symmetry of the supporting branch and to the position of the bud along the branch. On a radially symmetrical branch, all the axillary buds are alike—all clockwise, for example. But in a dorsiventrally organized branch the symmetry alternates from clockwise in 1 axillary bud to counterclockwise in the next bud along the axis. Leaf initiation and ontogeny of the axillary apical meristem conform with those of the terminal vegetative bud. The axillary bud arises as a shell zone in the second leaf axil from the terminal meristem. During this process the axillary apex develops a zonate appearance. The acropetally developing procambial supply of the axillary bud consists wholly of leaf traces. At the nodal level the bud traces diverge from the same gap as the median bundle trace of the subtending leaf. Only the basal 1–2 axillary buds which form immediately after the flowers elongate each year, while the majority remains dormant with 3 leaves or fewer.  相似文献   

4.
We studied the development and structure of the unusual trichotomous branching of Edgeworthia chrysantha. Three "branch primordia" are formed sequentially on the shoot apex of a main axis and develop into trichotomous branching. The branch primordia are clearly distinguishable from the typical axillary buds of other angiosperms; they develop much more rapidly than axillary buds, and the borders between the branch primordia and shoot apex of the main axis are anatomically unclear. Furthermore, at a later stage, leaves subtending the branch primordia produce typical axillary buds. These results suggest that the trichotomous branching in this species involves the division of the shoot apical meristem. Expression analysis of genes involved in branching or maintenance of the shoot apical meristem in this species should clarify the control mechanism of this novel branching pattern in angiosperms. We also observed the phyllotactic patterns in trichotomous branching and have related these patterns to the shoot system as a whole.  相似文献   

5.
In both Chamaedorea seifrizii Burret and C. cataractarum Martius each adult foliage leaf subtends one axillary bud. The proximal buds in C. seifrizii are always vegetative, producing branches (= new shoots or suckers); and the distal buds on a shoot are always reproductive, producing inflorescences. The prophyll and first few scale leaves of a vegetative branch lack buds. Transitional leaves subtend vegetative buds and adult leaves subtend reproductive buds. Both types of buds are first initiated in the axil of the second or third leaf primordia from the apex, P2 or P3. Later development of both types of bud tends to be more on the adaxial surface of the subtending leaf base than on the shoot axis. Axillary buds of C. cataractarum are similarly initiated in the axil of P2 or P3 and also have an insertion that is more foliar than cauline. However, all buds develop as inflorescences. Vegetative branches arise irregularly by a division of the apex within an enclosing leaf (= P1). A typical inflorescence bud is initiated in the axil of the enclosing leaf when it is in the position of P2 and when each new branch has initiated its own P1. No scale leaves are produced by either branch and the morphological relationship among branches and the enclosing leaf varies. Often the branches are unequal and the enclosing leaf is fasciated. The vegetative branching in C. cataractarum is considered to be developmentally a true dichotomy and is compared with other examples of dichotomous (= terminal) branching in the Angiospermae.  相似文献   

6.
Growth of axillary buds on the rhizomes of Elytrigia repens (L) Nevski is strongly dominated by the rhizome apex, by mechanisms which may involve endogenous hormones. We determined the distribution of indole-3-acetic acid (IAA) and abscisic acid (ABA) in rhizomes and measured (by gas-chromatography-mass spectrometry) their content in axillary buds after rhizomes were decapitated. The same measurements were also made in buds induced to sprout by removing their subtending scale leaves. The ABA content tended to be higher in the apical bud and in the axillary buds than in the adjacent internodes, and tended to decline basipetally in the internodes and scale leaves. IAA was similary distributed, except that there was less difference between the buds and other rhizome parts. After rhizomes were decapitated, the ABA content of the first axillary bud declined to 20% of that of control values within 24 h, while the IAA content showed no marked tendency to change. The ABA content also declined within 12 h in the first axillary bud after rhizomes were denuded, while the content of IAA tended to increase after 6 h. These changes occurred before the length of the first axillary bud increased 24–48 h after rhizomes were decapitated or denuded. We conclude that the release of axillary buds from apical dominance in E. repens does not require IAA content to be reduced, but is associated with reduced ABA content.  相似文献   

7.
Chlorohydra uiridissima whose tentacle number is altered at different temperatures, was studied to see how other developmental variables changed as a function of temperature. The results suggest that temperature is instrumental in establishing the size of bud and tentacle primordia, but the number of primordia present may play a limiting role.

Animals were cultured at 18, 23 and 28°C and shifted between the extreme temperatures. Large animals with 8 tentacles, small animals with 5 tentacles, and intermediate animals with 6 and 7 tentacles served as parents. Buds and parents were monitored daily and scored for numbers of buds and tentacles.

Temperature, not parental size, determined the size of the buds. At the lower temperature buds were produced more slowly and initiated less frequently, but occurred in greater numbers per parent and had more tentacles than at the higher temperatures. The duration of bud development also increased at lower temperature, but at the lowest temperature the duration of bud development was not correlated with tentacle numbers on buds.

Changes in the frequency of bud initiation and the duration of bud development induced by changing temperature did not parallel changes in the number of tentacles produced on buds. Animals shifted from 18°C to 28°C underwent rapid increases in the rate of bud initiation and rapid shortening in the duration of bud development, while animals shifted from 28°C to 18°C underwent equally rapid changes in the opposite directions. The number of tentacles produced on buds, however, changed slowly to that characteristic of buds acclimated to the new temperatures. The frequency of bud initiation and the duration of bud development, therefore, do not determine tentacle number.

The number of tentacles already present seems to limit possibilities for adding new tentacles. Parents with five tentacles were especially likely to undergo upward changes in their tentacle number while parents with eight tentacles were resistant to such changes.  相似文献   

8.
Terminal meristems of Pisum sativum (garden pea) transit from vegetative to inflorescence development, and begin producing floral axillary meristems. Determination for inflorescence development was assessed by culturing excised buds and meristems. The first node of floral initiation (NFI) for bud expiants developing in culture and for adventitious shoots forming on cultured meristems was compared with the NFI of intact control buds. When terminal buds having eight leaf primordia were excised from plants of different ages (i.e., number of unfolded leaves) and cultured on 6-benzylaminopurine and kinetin-supplemented medium, the NFI was a function of the age of the source plant. By age 3, all terminal buds were determined for inflorescence development. Determination occurred at least eight nodes before the first axillary flower was initiated. Thus, the axillary meristems contributing to the inflorescence had not formed at the time the bud was explanted. Similar results were obtained for cultured axillary buds. In addition, meristems excised without leaf primordia from axillary buds three nodes above the cotyledons of age-3 plants gave rise to adventitious buds with an NFI of 8.3 ±0.3 nodes. In contrast seed-derived plants had an NFI of 16.5 ±0.2. Thus cells within the meristem were determined for inflorescence development. These findings indicate that determination for inflorescence development in P. sativum is a stable developmental state, separable from determination for flower development, and occurring prior to initiation of the inflorescence at the level of meristems.  相似文献   

9.
Passiflora foetida bears an unbranched tendril, one or two laterally situated flowers, and one accessory vegetative bud in the axil of each leaf. The vegetative shoot apex has a single-layered tunica and an inner corpus. The degree of stratification in the peripheral meristem, the discreteness of the central meristem, and its centric and acentric position in the shoot apex are important plastochronic features. The procambium of the lateral leaf trace is close to the site of stipule initiation. The main axillary bud differentiates at the second node below the shoot apex. Adaxial to the bud 1–3 layers of cells form a shell-zone delimiting the bud meristem from the surrounding cells. A group of cells of the bud meristem adjacent to the axis later differentiates as an accessory bud. A second accessory bud also develops from the main bud opposite the previous one. A bud complex then consists of two laterally placed accessory bud primordia and a centrally-situated tendril bud primordium. The two accessory bud primordia differentiate into floral branches. During this development the initiation of a third vegetative accessory bud occurs on the axis just above the insertion of the tendril. This accessory bud develops into a vegetative branch and does not arise from the tissue of the tendril and adjacent two floral buds. The trace of the tendril bud consists of two procambial strands. There is a single strand for the floral branch trace. The tendril primordium grows by marked meristematic activity of its apical region and general intercalary growth.  相似文献   

10.
STOFFBERG, E., 1991. Morphological and ontogenetic studies on southern African podocarps. Shoot apex morphology and ovuliferous cone initiation. Four species of Podocarpus indigenous to southern Africa were investigated. The morphology of the primordium of the female cone is compared with that of the shoot apex. Rhythmic growth occurs in Podocarpus. The external morphology of bud scales protecting dormant shoot apices is described and illustrated. Female strobili of the three species of section Podocarpus studied are initiated in the axils of euphylls during the spring growth flush as laterally flattened triangular structures. The axillary position of a female cone indicates that it is a modified shoot. The first two cone bracts (prophylls) are formed approximately at right angles to the subtending bract (one or both are fertile), while the 3rd and 4th bracts originate on the anterior and posterior sides of the strobilus respectively. Two to four bracts per cone are formed, not in pairs–the phyllotaxis is spiral. In P.falcatus primordia of female strobili and vegetative branches could be distinguished only after emergence of the seed scale complex. Based on cell differentiation, well-defined cytological zones can be distinguished in the shoot apex and it is classified as being of the Abies-Cryptomeria-lype. Meristematic zones of cone primordia and vegetative branches are basically similar, although the former are less well defined. No gradual transition from a vegetative to a reproductive apex could be identified and it would seem that the fate of axillary buds are determined at the time of their origination or even before.  相似文献   

11.
The annual cycle of kiwifruit [Actinidia deliciosa(A. Chev.)C. F. Liang et A. R. Ferguson var.deliciosacv. Hayward] shootaxillary bud (first-order axillary bud, FOAB) morphogenesisis described. FOABs developed quickly with the majority of budscales and leaf primordia present approx. 125 d after budbreak(dab). Mature FOABs had, on average, 23.2 bud scales and leafprimordia. Most second-order axillary structures were also presentapprox. 125 dab. During the growing season, the second-orderstructures developed into second-order axillary buds (SOABs)or remained as simple, dome-shaped meristems (SDSMs). At maturity,nearly all FOABs had four SOABs and, on average, 12.4 SDSMs.Most SDSMs were fused to the subtending leaf primordia, butsome SDSMs developed so that they were ‘free’ fromthe subtending leaf primordia. Third-order axillary meristems(third-order SDSMs) were observed in the axils of most SOABs,and, on average, there were 20.6 per FOAB. Our observationson the development of second-order axillary structures are consistentwith evocation in kiwifruit occurring earlier than the generally-acceptedtime of late summer. Actinidia deliciosa; bud morphogenesis; development; flowering; evocation  相似文献   

12.
Regulation of Branching in Decussate Species with Unequal Lateral Buds   总被引:1,自引:0,他引:1  
In the decussate plants Alternanthera philoxeroides and Hygrophilasp. the opposite axillary bud primordia are of unequal sizefrom the time of their inception; the larger or + buds lie alongone helix and the smaller or – buds along another (helicoidalsystem). In decapitated plants of Alternanthera both buds grewout, but unequally; if the node was vertically split growthof the two shoots was more equal, and if the + buds were excisedgrowth of the – shoots approximately equalled that ofcontrol + shoots. In decapitated shoots of Hygrophila grownin sterile culture only one bud, the + or larger one, grew outat each of the upper nodes. In excised cultured nodes, also,only the + bud grew out; but if the nodes were split longitudinallyboth buds grew out, initially rather unequally. These experimentssupport the view that the regulation of branching in these specieshas two components, apical dominance and the dominance of thelarger (+) bud over the smaller (–) bud at the same node.The restriction of growth potentiality imposed on the –bud is not permanent but can be modified. Further correlativeeffects on bud outgrowth include those of the subtending leavesand of buds at other nodes.  相似文献   

13.
Pratt , Charlotte , John Einset , and Mohammad Zahur . (N. Y. S. Agric. Expt. Sta., Geneva.) Radiation damage in apple shoot apices. Amer. Jour. Bot. 46(7): 537–544. Illus. 1959.—Pattern of shoot growth and anatomy of the shoot apex of ‘Golden Delicious’ apple trees on ‘East Malling IX’ rootstock are compared in normal trees and those growing under chronic gamma irradiation (average doses of 17–48 r per 20-hr. day) at Brookhaven National Laboratory. Bud damage in 6 varieties of apple trees is compared. Irradiated ‘Golden Delicious’ formed lateral buds on the current year's shoot, but the following year these buds grew into spurs which failed to form a terminal bud (“budless” spurs) and enlarged to form “club tips” and “swollen spurs” in this and subsequent years. Cells with thick walls and lightly stained cytoplasm occurred in shoot apices of irradiated lateral buds in mid-June. The first tunica layer was more resistant to radiation than the inner tunica layers and the corpus; pith rib meristem was still more resistant. Inflorescence and floral meristems were rarely found, but once formed, continued development. One-year-old budless spurs had a few leaves but neither an organized apical meristem nor leaf primordia. Surface of the apex was often folded. Periderm and, later, deep-lying wound cambium developed. Expansion of pith, vascular tissue, cortex, wound cambium and periderm caused enlargement of club tips and swollen spurs. Many lateral buds from the gamma field which were propagated without irradiation in early August grew into long shoots with terminal buds. Scions removed from irradiation in November and inserted into normal trees showed lower survival and many of their shoots were budless. This suggests that the capacity for normal growth of a bud damaged by chronic irradiation is greater in mid-summer than later in the year. With reference to percentage of budless shoots, ‘Delicious,’ ‘Golden Delicious’ and ‘McIntosh’ were more sensitive to an average dose of 24 r per day and lower doses than were ‘Cox,’ ‘Macoun’ and ‘Spy.’ Symptoms of radiation damage in apple buds during the first year were similar following acute or chronic irradiation. Degree of radiation damage, as expressed by death of apical meristems, was concluded to vary with stage of development of the bud, structure of the apical meristem, and genetic constitution.  相似文献   

14.
SHARMAN  B. C. 《Annals of botany》1983,52(5):621-639
In wheat, the tip of the shoot apex normally consists of a coreof irregularly arranged cells covered by two uniseriate, selfperpetuating, layers (the dermatogen and the hypodermal layer):no third, inner layer (sub-hypodermal layer) is present. Leafinitiation involves periclinals in the cells of the dermatogenand hypodermal layers, but not the core. Buds involve many periclinalsin the outer cells of the core, a few occasionally in the hypodermallayer but never any in the dermatogen. The appearance of ‘double-ridges’signals inflorescence initiation. Each double-ridge is the equivalentof an axillary bud (the future spikelet bud) and its subtendingleaf primordium. The initiation of the subtending leaf is normal:the initiation of the spikelet bud is characterized by periclinaldivisions in the outer cells of the core, though some may alsooccur in cells of the hypodermal layer immediately outside:no periclinals are observed in the neighbouring dermatogen cells.All the above events concerned with leaf and bud initiationoccur in an easily recognizable, strictly distichous, pattern.In plants affected by 2, 4-dichlorophenoxyacetic acid the cellularpattern where double-ridges would have been arising, is badlydisrupted, due mainly to increased cell divisions in the hypodermallayer and outer part of the core, though possibly includingsome in the dermatogen. The apex tip itself is unaffected, probablyexplaining why, when growth is resumed, it produces a successionof normal spikelets in the normal phyllotaxis. Triticum aestivum L, bread wheat, shoot apex, double-ridge primordia, inflorescence initiation, spikelet buds, 2, 4-dichlorophenoxyacetic acid  相似文献   

15.
Correlative Inhibition in the Shoot of Agropyron repens ( L.) Beauv   总被引:1,自引:0,他引:1  
Correlative inhibition was investigated in plants of Agropyronrepens at two temperatures. Reciprocal inhibition ocrurred betweenthe main shoot apex and the outgrowing axillary shoots, withthe balance of inhibition varying with temperature. Apical dominancewas stronger at 10 °C than at 20 °C , but even at 10°C release of apical dominance by decapitation had onlyminor effects on the timing of outgrowth, growth pattern andrate of dry weight aocumulation of the axillary shoots. Dominanceof the main shoot apex by the axillary shoots was stronger at20 °C than at 10 °C. Removal of axillary buds preventeddecline in size and activity of the main shoot apex ard resultedin increased rates of primordium initiation, leaf emergenceand dry weight accumulation in the main shoot. It is suggestedthat a system of reciprocal dominance provides a mechanism formaintaining the characteristic habit of the grass plant andlimits growth in height of vegetative shoots. Agropyron repens (L.) Beauv, couch grass, correlative inhibition, apical dominance, shoot, apex  相似文献   

16.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

17.
Vegetative plants of Chenopodium amaranticolor were inducedto flower by exposure to 2, 6 or continuous short days (SDs)and the effect of such treatments on organogenesis at the apexof the main stem followed by means of dissections. The mostoutstanding responses to SD treatment were (I) an immediateelongation of the apex, (2) a stimulation of the rate of initiationof leaf primordia, and (3) a promotion of the rate of initiationof axillary bud primordia. In response to as few as 2 SDs, therate of initiation of leaf primordia increased from 0.47 toa maximum of 3.70 per day and the rate of initiation of axillarybud primordia immediately increased from 0.47 to 1.35 per day. Precocious initiation of axillary bud primordia led to the formationof double ridges. The results indicate double ridges to be homologouswith vegetative axillary buds; although they normally developedinto reproductive tissues, they passed through a period of vegetativegrowth following minimal induction to flowering by exposureto 2 SDs. The rate and degree of flowering were highest in plants whichreceived the longest period of SDs, but the differences in finalflowering response were greater than the differences betweenthe initial responses at the apices. The effect of SDs was thusnot confined to an initial stimulation of organogenesis; a prolongedexposure to SDs must have enhanced the subsequent developmentof double ridges into flower primordia. The results are discussed in relation to previous findings andthe general conclusion drawn that the initiation of double ridgesis very widely accompanied by a stimulation of apical growth.It is suggested that inductive conditions remove a general growthinhibition and that the resultant stimulation of apical growthmight lead to the initiation of double ridges.  相似文献   

18.
Under the tropical conditions of East Java, terminal buds of apple burst at any time of the year in response to removal of the subtending leaves. Following two such defoliations, two weeks apart on separate trees, there was a decrease in abscisic acid (ABA), a three-fold increase in gibberellin-like substances (GAs) and only a slight increase in cytokinin-like substances (CKs) in the apex tissue of closed buds. These changes preceded bud opening and the associated increases in fresh and dry weight, and may be causally related to bud burst. In open buds (i.e. young expanding leaves) the concentration of CKs was greater, and the concentrations of ABA and GAs less, than the concentrations in closed buds. As the leaves expanded, ABA increased and GAs and CKs decreased in concentration. The decrease in concentration of GAs and CKs, however, was due to the rise in dry weight of the expanding tissue; the amounts of all three hormones (per apex) increased. During bud burst there was a concurrent decrease in the CKs of subtending stems, suggesting a transfer into the expanding bud tissues. Removal of the old leaves by defoliation may remove the source of ABA and allow the amount of GAs in the apex to rise, bud burst following. Stem CKs may be utilized in the expansion of the new leaves in the bursting buds.  相似文献   

19.
An investigation was made of the anatomical structure of the shoot apex of wheat in the first four stages of organogenesis according toKuperman (1961). It was found that the shoot apex is first covered only with dermatogen (first stage). Then the hypodermis gradually differentiates (second stage) followed by differentiation of the subhypodermis (third stage). In the first stage, the central core of the apex is formed by more or less uniform isodiametric cells so that no zones are distinguishable. During the initiation of the primordia of the assimilating leaves, i.e. in the second stage, a group of larger cells was observed in the apical part of the hypodermis and can be compared with the central zone described in dicotyledons. Under it there is a characteristic group of smaller cells. In the third stage the differences between these groups of cells become less clear and in the fourth stage are no longer observable. No differences were found in the manner of initiating the leaf and bud primordia during the period of ontogenesis studied. There is, however, an alteration in the extent of growth between the bud primordium and the corresponding leaves. Short-day photoperiodic inhibition, always started on the days when the shoot apices were collected for anatomical study, showed that the determination of the primordia of the leaves and axillary buds as parts of the inflorescence is complete by the end of the third stage, at the time when the primordia in the central part of the ear are initiated  相似文献   

20.
Summary Primordia from buds of sun and shade twigs of European beech (Fagus sylvatica L.) were collected six times a year for anatomical investigations. Differentiation into sun-leaf and shade-leaf primordia was first observed in early August. Sun-leaf primordia had five, and shade-leaf primordia four layers of mesophyll meristem cells. With potted graft unions of beeches possible structural changes of leaf primordia were investigated. Trees adapted to shade develop sun-leaf primordia when put into full daylight, provided the transfer happened before July. Trees adapted to full daylight developed leaf primordia which remained structurally sun-leaf primordia when the plant was kept under shade conditions. Shadeleaf branches of young beech trees cut in February in order to expose the shade buds to full daylight developed either shade leaves or intermediate shade/sun leaves. These experiments show that the subtending leaf may provide the developing axillary bud with photoassimilates, but its character, whether sun or shade leaf, has no influence on the character of the developing leaf primordia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号