首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of S-adenosylmethionine in adenine-requiring yeast cells grown in a culture medium containing dl-, l-, or d-methionine was much larger than that in cells grown in a methionine-free medium. The accumulation of S-adenosyl-d-methionine in the cells was significantly lower than that of S-adenosyl-l-methionine. When yeast cells containing a large amount of S-adenosyl-l-methionine were incubated in an adenine-free medium, adenosylmethionine was degraded, but poor and insignificant growth was observed indicating the meager nature of this compound as an adenine source. No degradation of accumulated S-adenosyl-d-methionine was detected. Isotopic experiment revealed that S-adenosyl-l-methionine in the yeast cells turned over at a considerable rate when the medium contained both adenine and l-methionine. Most of the l-methionine assimilated appears to be metabolized via S-adenosyl-l-methionine.  相似文献   

2.
Structure of Aspartate-tRNA from Brewer's Yeast   总被引:6,自引:0,他引:6  
WE describe here the structure of aspartate-tRNA isolated from brewer's yeast. Fig. 1 shows that aspartate-tRNA is composed of seventy-five nucleotide residues including eight unusual nucleotides. It is one of the shortest tRNAs so far sequenced and has a pUp 5′ terminal sequence which has not yet been found in other sequenced tRNAs1–5. The 3′ terminal end is GCCAOH. This sequence has only previously been found in serine-tRNAs of yeast and rat liver.  相似文献   

3.
4.
Absorption of 35S-l-methionine by Chlorella vulgaris was measured at concentrations that ranged from 0.1 to 10.0 μmoles/ml. A brief, rapid phase of uptake was followed by a more prolonged, slower phase that was linear only at the lowest concentrations. The radioactivity accumulated by the end of 1 hour's incubation at an exogenous level of 0.1 μmole/ml was retained by the cells despite the inclusion of 10 μmoles/ml of nonradioactive methionine in the rinse medium. As the exogenous concentration was raised, the ratio of intracellular soluble radioactivity to exogenous radioactivity decreased. Analysis of the accumulated, soluble radioactivity showed that 90% was in the form of methionine and that about 10% had been converted to a compound with properties of S-adenosylmethionine. Azide and ethionine were the most effective of the inhibitors tested.  相似文献   

5.
Earlier work with a fluorescent aid indicated that flocculent brewer''s yeast may have more surface lipids than nonflocculent types. Organic solvents were checked against flocculent Gilliland yeasts. It was found that those reagents which affect “free” lipids had no dispersive action, and those which remove “bound” fats had a powerful dispersive action against such yeasts. There was no indication that such an action could be correlated with other physical properties of the solvents. The uranyl ion is known for its ability to complex with phospholipids, and it was found to have a powerful dispersive action on Gilliland yeasts. Its effect was compared with that of glucose in its dispersion of yeast flocs, and possible cell “sites” were suggested. This, along with other work, suggests the possibility that lipids are directly or indirectly involved in yeast flocculation.  相似文献   

6.
A bacterial gene encoding alpha-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the alpha-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the alpha-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer.  相似文献   

7.
Role of S-Adenosylmethionine in Methionine Biosynthesis in Yeast   总被引:2,自引:1,他引:1       下载免费PDF全文
Extracts of Saccharomyces cerevisiae were used to develop a cell-free system capable of converting the beta-carbon of serine into the methyl group of methionine. No requirement for either S-adenosylmethionine or S-adenosylhomocysteine could be demonstrated for net methionine biosynthesis. Growth of the cells in B(12) did not affect the reaction. The mechanism for the methylation of homocysteine in yeast appears to be similar to the non-B(12) system in Escherichia coli.  相似文献   

8.
水孔蛋白介导的水分运输具有选择性强、效率高和调节快等特点,在植物生长、发育和胁迫适应中起作用,文章介绍了水孔蛋白介导的水分运输及其分析测定技术.  相似文献   

9.
Approximately one-half of the mutants of Saccharomyces cerevisiae that are selected as resistant to methyl mercury are also found to require methionine. Eighty-four percent of these met mutations occur at the met15 locus, and the remaining 16% occur at the met2 locus. Surprisingly, the methionine-requiring mutants are recovered at a much higher frequency on methionineless media than on media supplemented with methionine. Growth patterns of the met mutants on media having a continuous concentration gradient of methionine and mercury compounds indicate that, at a critical concentration of the mercury compounds, the methionine requirement of certain met mutants is partially or completely alleviated. This was found for met2, met15, and to a lesser extent for met6, but not for any other methionine mutants. This loss of methionine requirement is produced with methyl mercury, phenyl mercury, and mercuric chloride although met2 and met15 strains can be shown to be resistant only to methyl mercury. Other methionine auxotrophs are not resistant to any of the three mercury compounds. The met2 and met15 mutants, but not the other methionine auxotrophs, develop a sheen of an unidentified product when grown on media with mercuric chloride but not with methyl mercury or phenyl mercury. It is suggested that met2 and met15 mutants produce a simple diffusible substance, which detoxifies methyl mercury, which reacts with mercuric chloride to produce a sheen, and which is the cause of the methionine requirement.  相似文献   

10.
To save energy, space, and time, today's breweries make use of high-gravity brewing in which concentrated medium (wort) is fermented, resulting in a product with higher ethanol content. After fermentation, the product is diluted to obtain beer with the desired alcohol content. While economically desirable, the use of wort with an even higher sugar concentration is limited by the inability of brewer's yeast (Saccharomyces pastorianus) to efficiently ferment such concentrated medium. Here, we describe a successful strategy to obtain yeast variants with significantly improved fermentation capacity under high-gravity conditions. We isolated better-performing variants of the industrial lager strain CMBS33 by subjecting a pool of UV-induced variants to consecutive rounds of fermentation in very-high-gravity wort (>22° Plato). Two variants (GT336 and GT344) showing faster fermentation rates and/or more-complete attenuation as well as improved viability under high ethanol conditions were identified. The variants displayed the same advantages in a pilot-scale stirred fermenter under high-gravity conditions at 11°C. Microarray analysis identified several genes whose altered expression may be responsible for the superior performance of the variants. The role of some of these candidate genes was confirmed by genetic transformation. Our study shows that proper selection conditions allow the isolation of variants of commercial brewer's yeast with superior fermentation characteristics. Moreover, it is the first study to identify genes that affect fermentation performance under high-gravity conditions. The results are of interest to the beer and bioethanol industries, where the use of more-concentrated medium is economically advantageous.  相似文献   

11.
It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.  相似文献   

12.
甲硫氨酸氨基肽酶 2 (type 2methionineaminopeptidase ,MetAP2 )是有效抑制血管生成的烟曲霉素类小分子化合物的蛋白质靶体。利用酵母双杂交系统筛选与MetAP2相互作用的蛋白质因子。首先将人MetAP2全长基因克隆至pGBKT7双杂合载体中 ,然后以构建的 pGBKT7MetAP2为靶蛋白质粒 ,筛选了人脑cDNA文库。在 2×10 6个转化子中得到 5个阳性克隆。序列测定表明 ,其中 3个阳性克隆编码人穴样内陷浮舰蛋白 (flotillin)片段 ,从而暗示MetAP2可能在flotillin参与的生物学过程中发挥作用  相似文献   

13.
The uptake of sugars by yeast can be separated into two classes. The first involves the uptake of sorbose or galactose by starved cells, and the uptake of glucose by iodoacetate-poisoned cells. These uptakes do not involve any changes in Ni++- or Co++-binding by the cell surface, are not inhibited by Ni++, are inhibited by UO2 ++ in relatively high concentrations, are characterized by high Michaelis constants and low maximal rates and by a final equilibrium distribution of the sugars. The second involves the uptake of glucose in unpoisoned cells and galactose in induced cells. These uptakes are characterized by a reduction of Ni++- and Co++-binding, by a partial inhibition by Ni++, by an inhibition with UO2 ++ in relatively low concentrations, and by a low Km and a high Vm. In the case of galactose in induced cells, previous studies demonstrate that the sugar is accumulated against a concentration gradient. It is suggested that the first class of uptakes involves a "facilitated diffusion" via a relatively non-specific carrier system, but the second represents an "uphill" transport involving the highly specific carriers, and phosphoryl groups (cation-binding sites) of the outer surface of the cell membrane.  相似文献   

14.
Stichococcus bacillaris Naeg., a green soil alga, can grow in the presence of methionine sulfoximine (MSX), an inhibitor of glutamine synthetase, by maintaining a high level of NADPH-glutamate dehydrogenase activity. MSX-grown cells can utilize both NH4+ and NO3 as nitrogen source for growth. [14C]Methylammonium is not metabolized by S. bacillaris, and is transported by a carrier system that obeys Michaelis Menten kinetics, and is insensitive to MSX.  相似文献   

15.
Abstract: The aim of this study was to determine the effect of angiotensin II (AII) on tyrosine hydroxylase (TOH) activity and phosphorylation in bovine adrenal chromaffin cells (BACCs). We report here that stimulation of BACCs with AII (100 n M ) produced a significant increase in both TOH activity and phosphorylation over a period of 10 min. The increase in TOH activity was receptor-mediated. Tryptic phosphopeptide analysis by HPLC revealed that AII stimulated an increase in phosphorylation of three sites on TOH, Ser19, Ser31, and Ser40, with the largest increase being observed for Ser31 phosphorylation. Pretreatment of the cells with the protein kinase C inhibitor Ro 31-8220 (10 µ M , 15 min) did not affect TOH activity or phosphorylation produced by AII. The inhibitor also did not affect the TOH activity or Ser40 phosphorylation produced by forskolin (10 µ M , 10 min). In contrast, Ro 31-8220 fully inhibited the TOH activation as well as Ser31 and Ser40 phosphorylation of TOH produced by phorbol 12, 13-dibutyrate (500 n M , 10 min). Removal of extracellular Ca2+ from the incubation medium inhibited the AII-induced TOH activity by 50% and significantly blocked Ser19 and Ser31 phosphorylation but did not affect Ser40 phosphorylation in response to AII. These results indicate that AII activates a complex and perhaps novel signaling pathway leading to the phosphorylation and activation of TOH. The TOH activation by AII appears to be partially independent of Ser40 phosphorylation, suggesting a potentially important role for Ser31 phosphorylation.  相似文献   

16.
Intact yeast cells loaded with 5- and-6-carboxyfluorescein were used to assess water transport. The results were similar to those previously reported for protoplasts assessed by using either fluorescence or light scattering, and the activation energies were 8.0 and 15.1 kcal mol−1 (33.4 and 63.2 kJ mol−1) for a strain overexpressing AQY1 aquaporin and a parental strain, respectively.  相似文献   

17.
A bacterial gene encoding α-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the α-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the α-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer.  相似文献   

18.
19.
Isolated yeast plasma membrane vesicles demonstrate a permeability barrier toward K(+) and glucose. Influx and efflux of glucose are inhibited by UO(2) (2+) ions.  相似文献   

20.
Ammonia causes astrocyte swelling which is abrogated by methionine sulfoximine (MSO). Since myo-inositol is an important osmolyte, we investigated the effects of ammonia and MSO on myo-inositol flux in cultured astrocytes for periods up to 72 hours. Uptake of myo-inositol was significantly decreased by 26.7 (P < 0.05) and 39.3 (P lt; 0.006) percent after 48 hours of exposure to 5 or 10 mM ammonia, respectively. The maximum rate of uptake was 14.0 ± 0.5 nmol/hour/mg protein which was reduced to 7.45 ± 0.27 and 7.02 ± 0.57 nmoles/hour/mg protein by 5 or 10 mM ammonia, respectively. The Kms by Michaelis-Menten equation for the control, and in the presence of 5, or 10 mM ammonia were 32.5 ± 4.52, 44.4 ± 5.82, and 39.3 ± 7.0 M, respectively. Kms by Hanes-Woolf plot for the control, 5, or 10 mM ammonia were 25, 45, and 40 M, respectively. Treatment of astrocytes with either 5 or 10 mM NH4Cl for 6 hours caused a decrease in myo-inositol content by 66% and 58%, respectively. MSO (3 mM) partially diminished the ammonia-induced inhibition of myo-inositol uptake and decreased myo-inositol content by 31% after 24 hours. Additionally, ammonia increased myo-inositol efflux briefly through the fast efflux component but had little effect on myo-inositol efflux through the slow efflux component of astrocytes exposed to ammonia for up to 72 hours. Predominantly decreased myo-inositol influx coupled with brief efflux through the fast component may represent an adaptive response to diminish the extent of ammonia-induced astrocyte swelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号