首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Removal of ultraviolet light induced cyclobutane pyrimidine dimers (CPD) from active and inactive genes was analyzed in cells derived from patients suffering from the hereditary disease Cockayne's syndrome (CS) using strand specific probes. The results indicate that the defect in CS cells affects two levels of repair of lesions in active genes. Firstly, CS cells are deficient in selective repair of the transcribed strand of active genes. In these cells the rate and efficiency of repair of CPD are equal for the transcribed and the nontranscribed strand of the active ADA and DHFR genes. In normal cells on the other hand, the transcribed strand of these genes is repaired faster than the nontranscribed strand. However, the nontranscribed strand is still repaired more efficiently than the inactive 754 gene and the gene coding for coagulation factor IX. Secondly, the repair level of active genes in CS cells exceeds that of inactive loci but is slower than the nontranscribed strand of active genes in normal cells. Our results support the model that CS cells lack a factor which is involved in targeting repair enzymes specifically towards DNA damage located in (potentially) active DNA.  相似文献   

2.
3.
4.
DNA excision repair modulates the mutagenic effect of many genotoxic agents. The recently observed strand specificity for removal of UV-induced cyclobutane dimers from actively transcribed genes in mammalian cells could influence the nature and distribution of mutations in a particular gene. To investigate this, we have analyzed UV-induced DNA repair and mutagenesis in the same gene, i.e. the hypoxanthine phosphoribosyl-transferase (hprt) gene. In 23 hprt mutants from V79 Chinese hamster cells induced by 2 J/m2 UV we found a strong strand bias for mutation induction: assuming that pre-mutagenic lesions occur at dipyrimidine sequences, 85% of the mutations could be attributed to lesions in the nontranscribed strand. Analysis of DNA repair in the hprt gene revealed that more than 90% of the cyclobutane dimers were removed from the transcribed strand within 8 hours after irradiation with 10 J/m2 UV, whereas virtually no dimer removal could be detected from the nontranscribed strand even up to 24 hr after UV. These data present the first proof that strand specific repair of DNA lesions in an expressed mammalian gene is associated with a strand specificity for mutation induction.  相似文献   

5.
6.
To determine whether gene expression patterns affect mutation rates and/or selection intensity in mammalian genes, we studied the relationships between substitution rates and tissue distribution of gene expression. For this purpose, we analyzed 2,400 human/rodent and 834 mouse/rat orthologous genes, and we measured (using expressed sequence tag data) their expression patterns in 19 tissues from three development states. We show that substitution rates at nonsynonymous sites are strongly negatively correlated with tissue distribution breadth: almost threefold lower in ubiquitous than in tissue-specific genes. Nonsynonymous substitution rates also vary considerably according to the tissues: the average rate is twofold lower in brain-, muscle-, retina- and neuron-specific genes than in lymphocyte-, lung-, and liver-specific genes. Interestingly, 5' and 3' untranslated regions (UTRs) show exactly the same trend. These results demonstrate that the expression pattern is an essential factor in determining the selective pressure on functional sites in both coding and noncoding regions. Conversely, silent substitution rates do not vary with expression pattern, even in ubiquitously expressed genes. This latter result thus suggests that synonymous codon usage is not constrained by selection in mammals. Furthermore, this result also indicates that there is no reduction of mutation rates in genes expressed in the germ line, contrary to what had been hypothesized based on the fact that transcribed DNA is more efficiently repaired than nontranscribed DNA.  相似文献   

7.
L Levinger  A Varshavsky 《Cell》1982,28(2):375-385
We have a new approach, two-dimensional hybridization mapping of nucleosomes, to compare the structures of mononucleosomes from different regions of the Drosophila melanogaster genome. Approximately one in two nucleosomes of the transcribed copia and heat-shock 70 (hsp 70) genes in nonshocked cultured cells contains ubiquitin-H2A (uH2A) semihistone, a covalent conjugate of histone H2A and a small protein, ubiquitin. In striking contrast, less than one in 25 nucleosomes of tandemly repeated, nontranscribed 1.688 satellite DNA contains uH2A, suggesting that most of the nucleosomal uH2A is located in transcribed genes. Approximately 25% of all nucleosomes are ubiquitinated in nonsynchronized cultured Drosophila cells. The hsp 70 genes in nonshocked cells occur in nucleosomes, are greatly enriched in uH2A and are not digested preferentially by staphylococcal nuclease. In contrast, the same genes in chromatin from heat-shocked cells are highly sensitive to staphylococcal nuclease and no longer possess nucleosomal organization recognizable with this probe. Histone ubiquitination in transcribed nucleosomes may prevent formation of higher order chromosomal structures by modifying nucleosome-nucleosome interactions. The observed loss of nucleosomal organization in very actively transcribed genes, such as the hsp 70 genes in shocked cells, may be related to the recent finding that ubiquitin conjugates are substrates for the cytoplasmic ATP-dependent proteolytic system. We have also found that 1.688 satellite mononucleotomes contain a specific approximately 50,000 dalton nonhistone protein, D1, in addition to being extremely under-ubiquitinated. D1 may be involved in formation of the highly compact structure of satellite heterochromatin.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Preferential repair of damage in actively transcribed DNA sequences in vivo   总被引:4,自引:0,他引:4  
P C Hanawalt 《Génome》1989,31(2):605-611
  相似文献   

17.
The macronuclear genes coding for rRNA (ribosomal DNA [rDNA]) of Paramecium tetraurelia, stock 51, are arranged in polymers consisting of units made up of a transcribed coding region and a nontranscribed spacer region. The whole macronuclear polymer ends with a portion of the spacer on either end followed by a telomere. Six kinds of macronuclear units, or genes, were mapped. Spacers were different, and transcribed regions were the same. These genes are found in markedly different numbers in the macronucleus. The most common gene shows two regions in the spacer where a sequence is followed by a direct repeat. The next most common gene is similar but shows a deletion plus a number of base pair substitutions. Although most cosmid clones contain only a single kind of gene, many contain more than one. These are thought to be produced by somatic crossing over. The four micronuclear genes that have been isolated consist of a single central transcribed region and portions of the spacer on either end. Sequencing indicates that the two ends of the molecule are partially redundant. While the spacer region at the right end of the macronuclear polymer is derived from the micronuclear spacer on the right, the spacer at the left end of the macronuclear polymer is derived from regions of the micronuclear spacer on both the right and the left. To account for this situation, a rolling-circle model for generation of the macronuclear rDNA from the micronuclear DNA is proposed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号