首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high level of genetic diversity and rapid evolution of viral RNA genomes are well documented, but few studies have characterized the rate and nature of ongoing genetic change over time under controlled experimental conditions, especially in plant hosts. The RNA genome of satellite tobacco mosaic virus (STMV) was used as an effective model for such studies because of advantageous features of its genome structure and because the extant genetic heterogeneity of STMV has been characterized previously. In the present study, the process of genetic change over time was studied by monitoring multiple serial passage lines of STMV populations for changes in their consensus sequences. A total of 42 passage lines were initiated by inoculation of tobacco plants with a helper tobamovirus and one of four STMV RNA inocula that were transcribed from full-length infectious STMV clones or extracted from purified STMV type strain virions. Ten serial passages were carried out for each line and the consensus genotypes of progeny STMV populations were assessed for genetic change by RNase protection analyses of the entire 1,059-nt STMV genome. Three different types of genetic change were observed, including the fixation of novel mutations in 9 of 42 lines, mutation at the major heterogeneity site near nt 751 in 5 of the 19 lines inoculated with a single genotype, and selection of a single major genotype in 6 of the 23 lines inoculated with mixed genotypes. Sequence analyses showed that the majority of mutations were single base substitutions. The distribution of mutation sites included three clusters in which mutations occurred at or very near the same site, suggesting hot spots of genetic change in the STMV genome. The diversity of genetic changes in sibling lines is clear evidence for the important role of chance and random sampling events in the process of genetic diversification of STMV virus populations.  相似文献   

2.
The evolution of vesicular stomatitis virus (VSV) in a constant environment, consisting of either mammalian or insect cells, has been compared to the evolution of the same viral population in changing environments consisting in alternating passages in mammalian and insect cells. Fitness increases were observed in all cases. An initial fitness loss of VSV passaged in insect cells was noted when fitness was measured in BHK-21 cells, but this effect could be attributed to a difference of temperature during VSV replication at 37 degrees C in BHK-21 cells. Sequencing of nucleotides 1-4717 at the 3' end of the VSV genome (N, P, M and G genes) showed that at passage 80 the number of mutations accumulated during alternated passages (seven mutations) is similar or larger than that observed in populations evolving in a constant environment (two to four mutations). Our results indicate that insect and mammalian cells can constitute similar environments for viral replication. Thus, the slow rates of evolution observed in natural populations of arboviruses are not necessarily due to the need for the virus to compromise between adaptation to both arthropod and vertebrate cell types.  相似文献   

3.
Repeated clone-to-clone (genetic bottleneck) passages of an RNA phage and vesicular stomatitis virus have been shown previously to result in loss of fitness due to Muller's ratchet. We now demonstrate that Muller's ratchet also operates when genetic bottleneck passages are carried out at 37 rather than 32 degrees C. Thus, these fitness losses do not depend on growth of temperature-sensitive (ts) mutants at lowered temperatures. We also demonstrate that during repeated genetic bottleneck passages, accumulation of deleterious mutations does occur in a stepwise (ratchet-like) manner as originally proposed by Muller. One selected clone which had undergone significant loss of fitness after only 20 genetic bottleneck passages was passaged again in clone-to-clone series. Additional large losses of fitness were observed in five of nine independent bottleneck series; the relative fitnesses of the other four series remained close to the starting fitness. In sharp contrast, when the same selected clone was transferred 20 more times as large populations (10(5) to 10(6) PFU transferred at each passage), significant increases in fitness were observed in all eight passage series. Finally, we selected several clones which had undergone extreme losses of fitness during 20 bottleneck passages. When these low-fitness clones were passaged many times as large virus populations, they always regained very high relative fitness. We conclude that transfer of large populations of RNA viruses regularly selects those genomes within the quasispecies population which have the highest relative fitness, whereas bottleneck transfers have a high probability of leading to loss of fitness by random isolation of genomes carrying debilitating mutations. Both phenomena arise from, and underscore, the extreme mutability and variability of RNA viruses.  相似文献   

4.
Extreme heterogeneity in populations of vesicular stomatitis virus.   总被引:19,自引:12,他引:7       下载免费PDF全文
Vesicular stomatitis virus (VSV) sequence evolution and population heterogeneity were examined by T1 oligonucleotide mapping. Individual clones isolated from clonal pools of wild-type Indiana serotype VSV displayed identical T1 maps. This was observed even after one passage at high concentrations of the potent viral mutagen 5-fluorouracil. Under low-multiplicity passage conditions, the consensus T1 fingerprint of this virus remained unchanged after 523 passages. Interestingly, however, individual clones from this population (passage 523) differed significantly from each other and from consensus sequence. When virus population equilibria were disrupted by high-multiplicity passage (in which defective interfering particle interference is maximized) or passage in the presence of mutagenic levels of 5-fluorouracil, rapid consensus sequence evolution occurred and extreme population heterogeneity was observed (with some members of these population differing from others at hundreds of genome positions). A limited sampling of clones at one stage during high-multiplicity passages suggested the presence of at least several distinct master sequences, the related subpopulations of which exhibit at least transient competitive fitness within the total virus population (M. Eigen and C.K. Biebricher, p. 211-245, in E. Domingo, J.J. Holland, P. Ahlquist, ed., RNA Genetics, vol. 3, 1988). These studies further demonstrate the important role of selective pressure in determining the genetic composition of RNA virus populations. This is true under equilibrium conditions in which little consensus sequence evolution is observed owing to stabilizing selection as well as under conditions in which selective pressure is driving rapid RNA virus genome evolution.  相似文献   

5.
Abstract Trichoplusia ni single embedded nuclear polyhedrosis virus (TnSNPV) is highly pathogenic for cell line but there were some problems with producing a few polyhedra and decrease of efficiency during serial passages. Sixty serial passages of TnSNPV were conducted in Tn 5B1–4 cell. Replication of the viral DNA and comparison of the viral character between the wild virus and clones from serial passages were performed. The TnSNPV DNA molecular weight, 115.8 kbp, was estimated by restriction enzyme analysis. Replication of the viral DNA which was analyzed by slot blot hybridization started at 8 h postinfection (p.i) and the DNA increased fast after 28 h p. i. The DNA synthesis reached a maximal number at 40 h p. i. The result from serial passage of the virus demanstrated that the relative BV titer was maitained at approximately 5 log TCIDSO/mL. The polyhedra of viral clones from early passages were almost normal but the majority of clones from late passages produced polyhedra without virions by examination with electron microscopy. Although there were some alterations with viral DNA from different clones, yet all of clones were from a homologous genome of wild virus by examination of restriction enzyme analysis and DNA:DNA hybridization.  相似文献   

6.
7.
Muller's ratchet predicts fitness losses in small populations of asexual organisms because of the irreversible accumulation of deleterious mutations and genetic drift. This effect should be enhanced if population bottlenecks intervene and fixation of mutations is not compensated by recombination. To study whether Muller's ratchet could operate in a retrovirus, 10 biological clones were derived from a human immunodeficiency virus type 1 (HIV-1) field isolate by MT-4 plaque assay. Each clone was subjected to 15 plaque-to-plaque passages. Surprisingly, genetic deterioration of viral clones was very drastic, and only 4 of the 10 initial clones were able to produce viable progeny after the serial plaque transfers. Two of the initial clones stopped forming plaques at passage 7, two others stopped at passage 13, and only four of the remaining six clones yielded infectious virus. Of these four, three displayed important fitness losses. Thus, despite virions carrying two copies of genomic RNA and the system displaying frequent recombination, HIV-1 manifested a drastic fitness loss as a result of an accentuation of Muller's ratchet effect.  相似文献   

8.
9.
10.
Clones of immortalized human fibroblasts with an extended life span in culture and a capability of subloning were obtained after the infection with a temperature sensitive mutant (tsA 239) of SV40 virus and pSV3neo plasmid. As compared with the parental cells, the obtained clones exhibited increased plating efficiency, decreased doubling time, and serum dependence. We did not obtained the colony formation during cultivation of immortalized cells in semiliquid agar. This means that our cells were not completely malignant. The PCR (polymerase chain reaction)-analysis has revealed the presence of viral DNA at early passages (25th passage) after the infection by tsA SV40, and its absence after a prolonged cultivation (46th passage). PCR-analysis of the clones obtained after pSV3neo transfection has revealed the presence of gene A sequences either at early (9-15), or later (62) passages. The expression of the gene A product in cells of these clones was revealed only early passages (11 and 35). Possible mechanisms of immortal phenotype origin in human diploid cells after the action of ts-mutant and other constructions of SV40 are discussed.  相似文献   

11.
We quantitatively analyzed the interference interactions between defective interfering (DI) particles and mutants of cloned vesicular stomatitis virus passaged undiluted hundreds of times in BHK-21 cells. DI particles which predominated at different times in these serial passages always interfered most strongly (and very efficiently) with virus isolated a number of passages before the isolation of the DI particles. Virus isolated at the same passage level as the predominant DI particles usually exhibited severalfold resistance to these DI particles. Virus mutants (Sdi- mutants) isolated during subsequent passages always showed increasing resistance to these DI particles, followed by decreasing resistance as new DI particles arose to predominate and exert their own selective pressures on the virus mutant population. It appears that such coevolution of virus and DI particle populations proceeds indefinitely through multiple cycles of selection of virus mutants resistant to a certain DI particle (or DI particle class), followed by mutants resistant to a newly predominant DI particle, etc. At the peak of resistance, virus mutants were isolated which were essentially completely resistant to a particular DI particle; i.e., they were several hundred thousand-fold resistant, and they formed plaques of normal size and numbers in the presence of extremely high multiplicities of the DI particle. However, they were sensitive to interference by other DI particles. Recurring population interactions of this kind can promote rapid virus evolution. Complete sequencing of the N (nucleocapsid) and NS (polymerase associated) genes of numerous Sdi- mutants collected at passage intervals showed very few changes in the NS protein, but the N gene gradually accumulated a series of stable nucleotide and amino acid substitutions, some of which correlated with extensive changes in the Sdi- phenotype. Likewise, the 5' termini (and their complementary plus-strand 3' termini) continued to accumulate extensive base substitutions which were strikingly confined to the first 47 nucleotides. We also observed addition and deletion mutations in noncoding regions of the viral genome at a level suggesting that they probably occur at a high frequency throughout the genome, but usually with lethal or debilitating consequences when they occur in coding regions.  相似文献   

12.
SVlm21 is a mutant of Sindbis virus which was isolated by serial passage of virus in mosquito cells maintained in low-methionine medium; it therefore has a low-methionine-resistant (LMR) phenotype. This phenotype requires mutations at nts 319 and 321; these mutations result in Arg to Leu and Ser to Cys changes at positions 87 and 88 respectively in the viral methyl transferase, nsP1. To better understand the genesis of SVlm21, we carried out serial passages of viruses having only one of these amino acid changes, but in mosquito cells maintained in normal methionine-medium. Whether the passage was begun with SV319 or with SV321, the dominant virus population which emerged always acquired the second SVlm21 amino acid change. However, when the passage was begun with virus having neither the nt 319 or the nt321 mutation, even after many passages neither of these mutations was seen in the passaged virus population. Virus with the LMR phenotype emerged earlier when the virus encoded a wild-type RDRP (passage 4) rather than the mutant RDRP encoded by SVpzf (passage 7). When the methionine concentration in the medium of mosquito cells was increased to 250 µM, more than 20 passages were required until the LMR phenotype predominated. Competition experiments were carried out to compare the relative fitness of SVlm21, SVwt, SV319 and SV321 to each other. Our results indicated that SVlm21 was dominant to SVwt, as well as to both SV319 and SV321. However, SV319 and SV321 were able to co-exist with SVwt implying that in these mixed infection the presence of SVwt inhibited the emergence of SVlm21. Finally, our experiments highlight how a virus population by mutation and selection can adapt to the intracellular concentration of a simple metabolite, S-adenosylmethionine.  相似文献   

13.
Most simian virus 40 (SV40)-transformed BALB/c 3T3 clones employed for biochemical studies have been used without regard to passage level. To determine whether virus-induced properties are stable as a function of passage, we have extensively characterized one transformed clone, FNE, which was isolated after SV40 infection BALB/c 3T3 cells in factor-free medium. From the initial testing at passage 5 and for at least 50 subsequent subcultures, the cells stably maintained many transformed growth properties, including high saturation density, morphology, colony formation on contact-inhibited monolayers, tumorigenicity, and synthesis of viral-specific RNA. However, other properties varied as a function of passage. There was a slight decrease in viral genome equivalents per cell from 1.1 copy/cell at passage 5 to 0.7 copies at passage 40. Initially, the cells were negative for all type C virus; however, cells carried at low density for 13 to 20 passages (65 to 100 generations) began to release an endogenous type C virus that then persisted in the culture. Spontaneous release of type C virus did not occur in control BALB/c 3T3 cells carried under identical culture conditions for 90 passages. When the cultures were releasing type C viruses they stained uniformly and brightly positive for SV40 tumor (T) antigen by immunofluorescence, whereas T antigen staining was variable at early passage. These experiments suggest that subtle but perhaps important differences in viral gene expression can occur as a function of passage; they also demonstrate the importance of evaluating the interactions between SV40 and endogenous type C viruses.  相似文献   

14.
Sequence analysis of the genomic RNA of interstrain guanidine-resistant and antibody-resistant variant recombinants of poliovirus type 1 mapped the resistance of mutants capable of growth in 2.0 mM guanidine hydrochloride to a region located 3' of nucleotide 4444. This region of the viral genome specifies the nonstructural protein 2C. The sequence of genomic RNA encoding 2C from six independently isolated mutants resistant to 2.0 mM guanidine was determined. All six isolates contained a mutation in 2C at the same position in all cases, resulting in two types of amino acid changes. Dependent mutants were examined and found to contain two amino acid changes each within 2C. Mutants resistant to 0.53 mM guanidine were isolated and found to lack the mutations seen in variants resistant to 2.0 mM guanidine. A comparison of the amino acid sequences of the 2C proteins of poliovirus, foot-and-mouth disease virus, rhinovirus types 2 and 14, and encephalomyocarditis virus revealed a strong homology over regions totaling 115 residues. All of the mutations observed in guanidine-selected mutants were contained within this region. The amino acid region containing the mutations observed in poliovirus mutants resistant to 2.0 mM guanidine was compared with the homologous region in the other picornaviruses; a strong correlation was found between the amino acid present at this position and the sensitivity of the virus to 2.0 mM guanidine.  相似文献   

15.
ABT-378, a new human immunodeficiency virus type 1 (HIV-1) protease inhibitor which is significantly more active than ritonavir in cell culture, is currently under investigation for the treatment of AIDS. Development of viral resistance to ABT-378 in vitro was studied by serial passage of HIV-1 (pNL4-3) in MT-4 cells. Selection of viral variants with increasing concentrations of ABT-378 revealed a sequential appearance of mutations in the protease gene: I84V-L10F-M46I-T91S-V32I-I47V. Further selection at a 3.0 μM inhibitor concentration resulted in an additional change at residue 47 (V47A), as well as reversion at residue 32 back to the wild-type sequence. The 50% effective concentration of ABT-378 against passaged virus containing these additional changes was 338-fold higher than that against wild-type virus. In addition to changes in the protease gene, sequence analysis of passaged virus revealed mutations in the p1/p6 (P1′ residue Leu to Phe) and p7/p1 (P2 residue Ala to Val) gag proteolytic processing sites. The p1/p6 mutation appeared in several clones derived from early passages and was present in all clones obtained from passage P11 (0.42 μM ABT-378) onward. The p7/p1 mutation appeared very late during the selection process and was strongly associated with the emergence of the additional change at residue 47 (V47A) and the reversion at residue 32 back to the wild-type sequence. Furthermore, this p7/p1 mutation was present in all clones obtained from passage P17 (3.0 μM ABT-378) onward and always occurred in conjunction with the p1/p6 mutation. Full-length molecular clones containing protease mutations observed very late during the selection process were constructed and found to be viable only in the presence of both the p7/p1 and p1/p6 cleavage-site mutations. This suggests that mutation of these gag proteolytic cleavage sites is required for the growth of highly resistant HIV-1 selected by ABT-378 and supports recent work demonstrating that mutations in the p7/p1/p6 region play an important role in conferring resistance to protease inhibitors (L. Doyon et al., J. Virol. 70:3763–3769, 1996; Y. M. Zhang et al., J. Virol. 71:6662–6670, 1997).  相似文献   

16.
Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.  相似文献   

17.
Development of viral resistance to the aminodiol human immunodeficiency virus (HIV) protease inhibitor BMS 186,318 was studied by serial passage of HIV type 1 RF in MT-2 cells in the presence of increasing concentrations of compound. After 11 passages, an HIV variant that showed a 15-fold increase in 50% effective dose emerged. This HIV variant displays low-level cross-resistance to the C2 symmetric inhibitor A-77003 but remains sensitive to the protease inhibitors Ro 31-8959 and SC52151. Genetic analysis of the protease gene from a drug-resistant variant revealed an Ala-to-Thr change at amino acid residue 71 (A71T) and a Val-to-Ala change at residue 82 (V82A). To determine the effects of these mutations on protease and virus drug susceptibility, recombinant protease and proviral HIV type 1 clones containing the single mutations A71T and V82A or double mutation A71T/V82A were constructed. Subsequent drug sensitivity assays on the mutant proteases and viruses indicated that the V82A substitution was responsible for most of the resistance observed. Further genotypic analysis of the protease genes from earlier passages of virus indicated that the A71T mutation emerged prior to the V82A change. Finally, the level of resistance did not increase following continued passage in increasing concentrations of drug, and the resistant virus retained its drug susceptibility phenotype 34 days after drug withdrawal.  相似文献   

18.
19.
E Paez  S Dallo    M Esteban 《Journal of virology》1987,61(8):2642-2647
To investigate the genetic stability of vaccinia virus DNA, we have tested whether alterations occurred in the polypeptide composition of this complex virus during persistent infections. We found that variants isolated at various passages in Friend erythroleukemia cells persistently infected with vaccinia virus contained, in addition to an 8-megadalton (MDa) deletion on the left terminus of the viral genome, major alterations in the sizes of three structural proteins with molecular masses of about 39, 21, and 14 kDa. Alterations in isoelectric points were also observed in proteins of 48, 27, and 14 kDa. The 14-kDa protein is part of the virus envelope, and the variants increased the size of this protein from 0.5 to 3 kDa with increasing passage number. Alteration in size of the 14-kDa protein is a dominant trait since it appeared in the whole virus population by passage 48. With more passages, some variants were found to increase or decrease the size of a 39-kDa core protein by about 2 kDa and to decrease the size of an envelope protein of 21 kDa by about 2 kDa. These three proteins were immunogenic in mice and elicited a strong host immune response. Major alterations in the sizes of these proteins were prevented by continuous treatment of the persistently infected cultures with interferon. However, after interferon was removed, protein modifications appeared with increasing passage number. Generation of the 8-MDa deletion and alterations in the size of the 14-kDa protein correlated with a marked decrease in virulence of these variants. Our findings suggest that during virus persistence, specific mutations are introduced in the vaccinia virus genome that lead to protein alterations and to highly attenuated viruses.  相似文献   

20.
Viral populations subjected to repeated genetic bottleneck accumulate deleterious mutations in a process known as Muller's ratchet. Asexual viruses, such as vesicular stomatitis virus (VSV) can recover from Muller's ratchet by replication with large effective population sizes. However, mutants with a history of bottleneck transmissions often show decreased adaptability when compared to non-bottlenecked populations. We have generated a collection of bottlenecked mutants and allowed them to recover by large population passages. We have characterized fitness changes and the complete genomes of these strains. Mutations accumulated during the operation of Muller's ratchet led to the identification of two potential mutational hot spots in the VSV genome. As in other viral systems, transitions were more common than transversions. Both back mutation and compensatory mutations contributed to recovery, although a significant level of fitness increase was observed in nine of the 13 bottlenecked strains with no obvious changes in the consensus sequence. Additional replication of three strains resulted in the fixation of single point mutations. Only two mutations previously found in non-bottlenecked, high-fitness populations that had been adapting to the same environment were identified in the recovered strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号