首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
GATC sequence and mismatch repair in Escherichia coli.   总被引:11,自引:2,他引:9       下载免费PDF全文
The Escherichia coli mismatch repair system greatly improves DNA replication fidelity by repairing single mispaired and unpaired bases in newly synthesized DNA strands. Transient undermethylation of the GATC sequences makes the newly synthesized strands susceptible to mismatch repair enzymes. The role of unmethylated GATC sequences in mismatch repair was tested in transfection experiments with heteroduplex DNA of phage phi 174 without any GATC sequence or with two GATC sequences, containing in addition either a G:T mismatch (Eam+/Eam3) or a G:A mismatch (Bam+/Bam16). It appears that only DNA containing GATC sequences is subject to efficient mismatch repair dependent on E. coli mutH, mutL, mutS and mutU genes; however, also in the absence of GATC sequence some mut-dependent mismatch repair can be observed. These observations suggest that the mismatch repair enzymes recognize both the mismatch and the unmethylated GATC sequence in DNA over long distances. The presence of GATC sequence(s) in the substrate appears to be required for full mismatch repair activity and not only for its strand specificity according to the GATC methylation state.  相似文献   

2.
Methyl-directed DNA mismatch repair in Escherichia coli   总被引:5,自引:0,他引:5  
Some of the molecular aspects of methyl-directed mismatch repair in E. coli have been characterized. These include: mismatch recognition by mutS protein in which different mispairs are bound with different affinities; the direct involvement of d(GATC) sites; and strand scission by mutH protein at d(GATC) sequences with strand selection based on methylation of the DNA at those sites. In addition, communication over a distance between a mismatch and d(GATC) sites has been implicated. Analysis of mismatch correction in a defined system (Lahue et al., unpublished) should provide a direct means to further molecular aspects of this process.  相似文献   

3.
Previous biochemical analysis of Escherichia coli methyl-directed mismatch repair implicates three redundant single-strand DNA-specific exonucleases (RecJ, ExoI, and ExoVII) and at least one additional unknown exonuclease in the excision reaction (Cooper, D. L., Lahue, R. S., and Modrich, P. (1993) J. Biol. Chem. 268, 11823-11829). We show here that ExoX also participates in methyl-directed mismatch repair. Analysis of the reaction with crude extracts and purified components demonstrated that ExoX can mediate repair directed from a strand signal 3' of a mismatch. Whereas extracts of all possible single, double, and triple exonuclease mutants displayed significant residual mismatch repair, extracts deficient in RecJ, ExoI, ExoVII, and ExoX exonucleases were devoid of normal repair activity. The RecJ(-) ExoVII(-) ExoI(-) ExoX(-) strain displayed a 7-fold increase in mutation rate, a significant increase, but less than that observed for other blocks of the mismatch repair pathway. This elevation is epistatic to deficiency for MutS, suggesting an effect via the mismatch repair pathway. Our other work (Burdett, V., Baitinger, C., Viswanathan, M., Lovett, S. T., and Modrich, P. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 6765-6770) suggests that mutants are under-recovered in the exonuclease-deficient strain due to loss of viability that is triggered by mismatched base pairs in this genetic background. The availability of any one exonuclease is enough to support full mismatch correction, as evident from the normal mutation rates of all triple mutants. Because three of these exonucleases possess a strict polarity of digestion, this suggests that mismatch repair can occur exclusively from a 3' or a 5' direction to the mismatch, if necessary.  相似文献   

4.
In Escherichia coli and related enteric bacteria, repair of base-base mismatches is performed by two overlapping biochemical processes, methyl-directed mismatch repair (MMR) and very short-patch (VSP) repair. While MMR repairs replication errors, VSP repair corrects to C*G mispairs created by 5-methylcytosine deamination to T. The efficiency of the two pathways changes during the bacterial life cycle; MMR is more efficient during exponential growth and VSP repair is more efficient during the stationary phase. VSP repair and MMR share two proteins, MutS and MutL, and although the two repair pathways are not equally dependent on these proteins, their dual use creates a competition within the cells between the repair processes. The structural and biochemical data on the endonuclease that initiates VSP repair, Vsr, suggest that this protein plays a role similar to MutH (also an endonuclease) in MMR. Biochemical and genetic studies of the two repair pathways have helped eliminate certain models for MMR and put restrictions on models that can be developed regarding either repair process. We review here recent information about the biochemistry of both repair processes and describe the balancing act performed by cells to optimize the competing processes during different phases of the bacterial life cycle.  相似文献   

5.
Summary Bromouracil mutagenesis was studied in several strains of E. coli in combination with measurement of incorporation of bromouracil in DNA. For levels below 10% total replacement of bromouracil for thymine, mutagenesis was negligible compared with higher levels of incorporation. Such a nonlinear response occurred both when the bromouracil was evenly distributed over the genome and when a small proportion of the genome was highly substituted. Also, the mutation frequency could be drastically lowered by amino acid starvation following bromouracil incorporation. These observations suggest the involvement of repair phenomena. Studies of mutagenesis in recA and uvrA mutants, as well as studies of prophage induction, did not support an error prone repair pathway of mutagenesis. On the other hand, uvrD and uvrE mutants, which are deficient in DNA mismatch repair, had much increased mutation frequencies compared with wild type cells. The mutagenic action of bromouracil showed specificity under the conditions used, as demonstrated by the inability of bromouracil to revert an ochre codon that was easily revertable by ultraviolet light irradiation. The results are consistent with a mechanism of bromouracil mutagenesis involving mispairing, but suggest that the final mutation frequencies depend on repair that removes mismatched bases.  相似文献   

6.
A screening procedure based on the formation of papillae on individual bacterial colonies was used to isolate mutants of Escherichia coli with high mutation rates in the presence of bromouracil. Most of the mutants obtained had high spontaneous mutation rates and mapped close to the previously known mutators mutT, mutS, mutR, uvrE and mutL. Except for mutants of mutT type, these mutators also showed high mutability by bromouracil. Transfection experiments were performed with heteroduplex lambda DNA to test for mismatch repair. The results suggest a reduced efficiency of repair of mismatched bases in mutators mutS, mutR, uvrE and mutL, whereas mutants mapping as mutT appear normal. The results support a connection between spontaneous and bromouracil-induced mutability and repair of mismatched bases in DNA.  相似文献   

7.
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.  相似文献   

8.
The mutD (dnaQ) gene of Escherichia coli codes for the proofreading activity of DNA polymerase III. The very strong mutator phenotype of mutD5 strains seems to indicate that their postreplicational mismatch repair activity is also impaired. We show that the mismatch repair system of mutD5 strains is functional but saturated, presumably by the excess of DNA replication errors, since it is recovered by inhibiting chromosomal DNA replication. This recovery depends on de novo protein synthesis.  相似文献   

9.
The T4 dam+ gene has been cloned (S. L. Schlagman and S. Hattman, Gene 22:139-156, 1983) and transferred into an Escherichia coli dam-host. In this host, the T4 Dam DNA methyltransferase methylates mainly, if not exclusively, the sequence 5'-GATC-3'; this sequence specificity is the same as that of the E. coli Dam enzyme. Expression of the cloned T4 dam+ gene suppresses almost all the phenotypic traits associated with E. coli dam mutants, with the exception of hypermutability. In wild-type hosts, 20- to 500-fold overproduction of the E. coli Dam methylase by plasmids containing the cloned E. coli dam+ gene results in a hypermutability phenotype (G.E. Herman and P. Modrich, J. Bacteriol. 145:644-646, 1981; M.G. Marinus, A. Poteete, and J.A. Arraj, Gene 28:123-125, 1984). In contrast, the same high level of T4 Dam methylase activity, produced by plasmids containing the cloned T4 dam+ gene, does not result in hypermutability. To account for these results we propose that the E. coli Dam methylase may be directly involved in the process of methylation-instructed mismatch repair and that the T4 Dam methylase is unable to substitute for the E. coli enzyme.  相似文献   

10.
A L Lu 《Journal of bacteriology》1987,169(3):1254-1259
The effect of the number and position of DNA adenine methylation (dam) sites, i.e., d(GATC) sequences, on mismatch repair in Escherichia coli was investigated. The efficiency of repair was measured in an in vitro assay which used an f1 heteroduplex containing a G/T mismatch within the single EcoRI site. Both an increase in the number of dam sites and a shortened distance between dam site and mismatched site increased the efficiency of mismatch repair. The sequences adjacent to d(GATC) also affected the efficiency of methylation-directed mismatch repair. Furthermore, heteroduplexes with one extra dam site located close to either the 5' or 3' end of the excised base increased the repair efficiency to about the same extent. The findings suggest that the mismatch repair pathway has no preferred polarity.  相似文献   

11.
12.
13.
A protein homologous to the Escherichia coli MutY protein, referred to as MYH, has been identified in nuclear extracts of calf thymus and human HeLa cells. Western blot (immunoblot) analysis using polyclonal antibodies to the E. coli MutY protein detected a protein of 65 kDa in both extracts. Partial purification of MYH from calf thymus cells revealed a 65-kDa protein as well as a functional but apparently degraded form of 36 kDa, as determined by glycerol gradient centrifugation and immunoblotting with anti-MutY antibodies. Calf MYH is a DNA glycosylase that specifically removes mispaired adenines from A/G, A/7,8-dihydro-8-oxodeoxyguanine (8-oxoG or GO), and A/C mismatches (mismatches indicated by slashes). A nicking activity that is either associated with or copurified with MYH was also detected. Nicking was observed at the first phosphodiester bond 3' to the apurinic or apyrimidinic (AP) site generated by the glycosylase activity. The nicking activity on A/C mismatches was 30-fold lower and the activity on A/GO mismatches was twofold lower than that on A/G mismatches. No nicking activity was detected on substrates containing other selected mismatches or homoduplexes. Nicking activity on DNA containing A/G mismatches was inhibited in the presence of anti-MutY antibodies or upon treatment with potassium ferricyanide, which oxidizes iron-sulfur clusters. Gel shift analysis showed specific binding complex formation with A/G and A/GO substrates, but not with A/A, C.GO, and C.G substrates. Binding is sevenfold greater on A/GO substrates than on A/G substrates. The eukaryotic MYH may be involved in the major repair of both replication errors and oxidative damage to DNA, the same functions as those of the E. coli MutY protein.  相似文献   

14.
15.
Circular heteroduplex DNAs of bacteriophage phi X174 have been constructed carrying either a G:T (Eam+/Eam3) or a G:A (Bam+/Bam16) mismatch and containing either two, one or no GATC sequences. Mismatches were efficiently repaired in wild-type Escherichia coli transfected with phi X174 heteroduplexes only when two unmethylated GATC sequences were present in phi X174 DNA. The requirements for GATC sequences in substrate DNA and for the E. coli MutH function in E. coli mismatch repair can be alleviated by the presence of a persistent nick (transfection with nicked heteroduplex DNA in ligase temperature-sensitive mutant at 40 degrees C). A persistent nick in the GATC sequence is as effective in stimulating mutL- and mutS-dependent mismatch repair as a nick distant from the GATC sequence and from the mismatch. These observations suggest that the MutH protein participates in methyl-directed mismatch repair by recognizing unmethylated DNA GATC sequences and/or stimulating the nicking of unmethylated strands.  相似文献   

16.
17.
UVM (ultravioletmodulation of mutagenesis) is a recently describedrecA-independent, inducible mutagenic phenomenon in which prior UV irradiation ofEscherichia coli cells strongly enhances mutation fixation at a site-specific 3-N4-ethenocytosine (?C) lesion borne on a transfected single-stranded M13 DNA vector. Subsequent studies demonstrated that UVM is also induced by alkylating agents, and is distinct from both the SOS response and the adaptive response to alkylation damage. Because of the increasing significance being attributed to oxidative DNA damage, it is interesting to ask whether this class of DNA damage can also induce UVM. By transfecting M13 vector DNA bearing a site-specific?C lesion into cells pretreated with inducing agents, we show here that the oxidative agent H2O2 is a potent inducer of UVM, and that the induction of UVM by H2O2 does not requireoxyR-regulated gene expression. UVM induction by H2O2 appears to be mediated by DNA damage, as indicated by the observation of a concomitant reduction in cellular toxicity and UVM response in OxyRc cells. Available evidence suggests that UVM represents a generalized cellular response to a broad range of chemical and physical genotoxicants, and that DNA damage constitutes the most likely signal for its induction.  相似文献   

18.
Expression of the site-specific adenine methylase HhaII (GmeANTC, where me is methyl) or PstI (CTGCmeAG) induced the SOS DNA repair response in Escherichia coli. In contrast, expression of methylases indigenous to E. coli either did not induce SOS (EcoRI [GAmeATTC] or induced SOS to a lesser extent (dam [GmeATC]). Recognition of adenine-methylated DNA required the product of a previously undescribed gene, which we named mrr (methylated adenine recognition and restriction). We suggest that mrr encodes an endonuclease that cleaves DNA containing N6-methyladenine and that DNA double-strand breaks induce the SOS response. Cytosine methylases foreign to E. coli (MspI [meCCGG], HaeIII [GGmeCC], BamHI [GGATmeCC], HhaI [GmeCGC], BsuRI [GGmeCC], and M.Spr) also induced SOS, whereas one indigenous to E. coli (EcoRII [CmeCA/TGG]) did not. SOS induction by cytosine methylation required the rglB locus, which encodes an endonuclease that cleaves DNA containing 5-hydroxymethyl- or 5-methylcytosine (E. A. Raleigh and G. Wilson, Proc. Natl. Acad. Sci. USA 83:9070-9074, 1986).  相似文献   

19.
Repair of heteroduplex DNA containing an A/G mismatch in a mutL background requires the Escherichia coli mutY gene function. The mutY-dependent in vitro repair of A/G mismatches is accompanied by repair DNA synthesis on the DNA strand bearing mispaired adenines. The size of the mufY-dependent repair tract was measured by the specific incorporation of α-[32P]dCTP into different restriction fragments of the repaired DNA. The repair tract is shorter than 12 nucleotides and longer than 5 nucleotides and is localized to the 3′ side of the mismatched adenine. This repair synthesis is carried out by DNA polymerase I.  相似文献   

20.
The expansion of normally polymorphic CTG microsatellites in certain human genes has been identified as the causative mutation of a number of hereditary neurological disorders, including Huntington's disease and myotonic dystrophy. Here, we have investigated the effect of methyl-directed mismatch repair (MMR) on the stability of a (CTG)43 repeat in Escherichia coli over 140 generations and find two opposing effects. In contrast to orientation-dependent repeat instability in wild-type E. coli and yeast, we observed no orientation dependence in MMR- E. coli cells and suggest that, for the repeat that we have studied, orientation dependence in wild-type cells is mainly caused by functional mismatch repair genes. Our results imply that slipped structures are generated during replication, causing single triplet expansions and contractions in MMR- cells, because they are left unrepaired. On the other hand, we find that the repair of such slipped structures by the MMR system can go awry, resulting in large contractions. We show that these mutS-dependent contractions arise preferentially when the CTG sequence is encoded by the lagging strand. The nature of this orientation dependence argues that the small slipped structures that are recognized by the MMR system are formed primarily on the lagging strand of the replication fork. It also suggests that, in the presence of functional MMR, removal of 3 bp slipped structures causes the formation of larger contractions that are probably the result of secondary structure formation by the CTG sequence. We rationalize the opposing effects of MMR on repeat tract stability with a model that accounts for CTG repeat instability and loss of orientation dependence in MMR- cells. Our work resolves a contradiction between opposing claims in the literature of both stabilizing and destabilizing effects of MMR on CTG repeat instability in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号