首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viable dried yeast is used as an inoculum for many fermentations in the baking and wine industries. The fermentative activity of yeast in bread dough or grape must is a critical parameter of process efficiency. Here, it is shown that fluorescent stains and flow cytometry can be used in concert to predict the abilities of populations of dried bakers' and wine yeasts to ferment after rehydration. Fluorescent dyes that stain cells only if they have damaged membrane potential (oxonol) or have increased membrane permeability (propidium iodide) were used to analyse, by flow cytometry, populations of rehydrated yeasts. A strong relationship (r2 = 0.99) was found between the percentages of populations staining with the oxonol and the degree of cell membrane damage as measured by the more traditional method of leakage of intracellular compounds. There were also were good negative relationships (r2 > or = 0.83) between fermentation by rehydrated bakers' or wine dry yeasts and percentage of populations staining with either oxonol or propidium iodide. Fluorescent staining with flow cytometry confirmed that factors such as vigour of dried yeast mixing in water, soaking before stirring, rehydration in water or fermentation medium and temperature of rehydration have profound effects on subsequent yeast vitality. These experiments indicate the potential of flow cytometry as a rapid means of predicting the fermentation performance of dried bakers' and wine yeasts.  相似文献   

2.
Glutathione status and its relationship to protein synthesis during water deficit and subsequent rehydration have been examined in the drought-tolerant moss, Tortula ruralis. During slow drying there is a small decrease in total glutathione but the percentage of oxidized glutathione (GSSG) increases. During rapid drying there is little change in total glutathione but a small increase in GSSG. On rehydration of slowly dried moss, GSSG rapidly declines to normal level. But when rapidly dried moss is rehydrated, there is an immediate, sharp increase in GSSG as a percentage of total glutathione. After 2 hours of rehydration GSSG starts declining and reaches a normal level in about 6 hours. When an increasing degree of steady state water deficit is imposed on the moss tissue with polyethylene glycol 6000, there is a progressive decrease in protein synthesis but an increase in oxidized glutathione. When 5 millimolar GSSG is supplied exogenously during rehydration of rapidly dried or slowly dried moss, protein synthesis is strongly inhibited. In vitro protein synthesis supported by moss mRNA is also inhibited by more than 85% by 150 micromolar GSSG. The role of glutathione status in water deficit-induced inhibition of protein synthesis is discussed.  相似文献   

3.
Dried spaghetti was rehydrated to its optimal cooking state, known as al dente, at 60, 80, and 100 °C, in distilled water or 0.1, 1.0, and 2.0 mol/L sodium chloride solutions. Then, the moisture distributions and stress–strain curves were examined to identify the major factors governing the texture of rehydrated spaghetti. The difference in moisture content between the inner and peripheral regions of rehydrated spaghetti and its breaking stress were greater at higher rehydration temperatures; however, rehydration temperature did not affect breaking strain. The sodium chloride concentration of the immersion solution did not affect moisture distribution or breaking stress, while breaking strain was decreased by rehydration at higher sodium chloride concentrations. The results obtained in this study suggest that moisture distribution within spaghetti and its material properties govern its breaking stress and strain, respectively.  相似文献   

4.
Total plate counts were determined on boneless cooked, cubed chicken meat obtained from a commercial processor. Survival of the natural flora was determined after the meat was freeze-dehydrated and rehydrated at room temperature for 30 min and 50, 85, and 100 C for 10 min. Total counts of bacteria in the rehydrated samples were determined during storage of the meat at 4, 22, and 37 C until spoilage odor was detectable. Meat samples were inoculated with Staphylococcus aureus, then dried, rehydrated, and stored at the same temperatures. Numbers of surviving organisms in the inoculated samples were determined with use of both selective and nonselective media. Representative genera surviving the various rehydration treatments were determined. Approximately 32% of the bacteria in the meat survived during dehydration and rehydration at room temperature. Many numbers and types of vegetative bacteria also survived rehydration at 50 C. When meat was rehydrated at 85 or 100 C, the initial count was less than one per gram. The only organisms isolated from samples rehydrated at 85 or 100 C were of the genus Bacillus. S. aureus in inoculated samples survived dehydration and rehydration at 60 C. Storage of all rehydrated samples at 4 C gave a good shelf life (18 or more days). The study indicates that freeze-dehydrated meat should be produced with adequate microbiological control and that such meat should be rehydrated in very hot water.  相似文献   

5.
The rehydration of dried conidia of Metarhizium flavoviride was investigated in an attempt to increase speed of kill of locusts and grasshoppers by formulations of this fungus. Conidia were dried to 4-5% moisture content with no apparent adverse effects on viability, but rapid rehydration (by putting dried conidia directly in free water) reduced viability. Rehydration in an atmosphere of high humidity allowed dry conidia to absorb sufficient moisture to avoid imbibition damage. Rehydrating and pre-germinating conidia prior to spraying (in an oil-based formulation) on to the desert locust, Schistocerca gregaria, did not decrease the time to death, suggesting that moisture uptake by dry conidia on the desert locust cuticle is easily achieved.  相似文献   

6.
Dry preservation involves removing water from samples so that degradative biochemical processes are slowed and extended storage is possible. Recently this approach has been explored as a method for preserving living mammalian cells. The current work explores the use of microwave processing to enhance evaporation rates and to improve drying uniformity, thereby overcoming some of the challenges in this field. Mouse macrophage cells (J774) were pre-incubated in full complement media containing 50 mM trehalose, for 18-h, to allow for endocytosis of trehalose. Droplets of experimental and control (no intracellular trehalose) cell suspensions were placed on coverslips in a microwave cavity. Water was evaporated using intermittent microwave heating (600 W, 30 s intervals). Samples were dried to various moisture levels, rehydrated, and then survival was assessed after a 45-min recovery period using Calcein-AM/PI fluorescence and Trypan Blue exclusion assays. The metabolic activity of dried cells (4.3 gH(2)O/gdw) was assessed after rehydration using a resazurin reduction assay. Apoptosis levels were also measured. Post- rehydration survival correlated with the final moisture content achieved, consistent with other drying methods. Intracellular trehalose provided protection against injury associated with moisture loss. Metabolic assays revealed normal growth in surviving cells, and these survival levels were consistent with results from apoptosis assays (P > 0.05). Brightfield and fluorescence images of microwave-dried samples revealed a uniform distribution of cells within the dried matrix and profilometry analysis demonstrated that solids were uniformly distributed throughout the sample. Microwave-processing successfully facilitated rapid and uniform dehydration of cell-based samples.  相似文献   

7.
Summary This paper describes the characteristics of the structural and functional organization of cellular membranes rehydrated after dehydration of the yeast Saccharomyces cerevisiae. It was noted that dehydration and subsequent rehydration of yeast cells causes a considerable increase of cytoplasmic membrane permeability. Addition of CaCl2, glucose and polyethyleneglycol to the rehydration medium caused a decrease in cell permeability, assessed as the losses of potassium ions, nucleotides, as well as the total losses of intracellular compounds. KCl had a positive effect only at concentrations above 10%. Yeast cells, dried to residual moisture lower than 20%, showed a decrease in membrane permeability as temperatures of the rehydration medium increased up to 38°–43°C. Upon reactivation of viable dehydrated cells in a nutrient medium, a reparation of the structural damages of various intracellular membranes takes place. It was established that at cell dehydration to residual moistures of 8%–12% all the free and a part of bound water is evaporated from cells.  相似文献   

8.
Boea hygroscopica is a resurrection plant that is able to pass from biosis to anabiosis and vice versa following slow dehydration, but loses this ability following a rapid water loss. Fresh leaves were detached from plants grown in well-watered conditions and subjected to either rapid or slow dehydration and rehydration. Upon rehydration only slowly dried leaves revived. Analysis of thylakoid membranes revealed a rather small amount of total lipids (1,4–2 μmol g?1 dry weight) in comparison with other flowering plants. The main glycolipid was digalactosyldiacylglycerol (DGDG) rather than monogalactosyldiacylglycerol (MGDG) as is common in higher plants. Linoleic acid was the main fatty acid (30–40 mol% of total fatty acids), while linolenic acid was present from 14 to 26 mol%. In both the fresh and rehydrated leaves nearly all lipid components were present in similar amounts. Following dehydration the DGDG/MGDG molar ratio, which was 1.1 in control and rehydrated leaves, doubled by the end of the rapid drying period and was three times as high in slowly dried leaves. The total polar lipid/free sterol molar ratio as well as the free fatty acid level assumed the highest values in the rapidly dehydrated leaves. A shift towards the more unsaturated fatty acids was observed in all lipid classes upon dehydration irrespective of whether it was slow or rapid. Our data show only small differences between rapidly and slowly dehydrated leaves which can be correlated to the capacity of slowly dehydrated leaves to revive.  相似文献   

9.
The effect of initial cell density, protective agents and rehydration media on the viability of biocontrol agent Pantoea agglomerans CPA-2 when subjected to freeze-drying was studied. Several additives were tested as protective agents against freeze-drying injury. Maximum viability of the bacterial cells was obtained with disaccharides (survival levels > 60%). Freeze-dried samples were rehydrated with several media; the highest percentage viability was obtained with 10% non-fat skim milk (100%+). The effect of initial bacterial load on the final recovery was dependent on protectant but not on rehydration media. Sucrose was an effective protectant when a high initial concentration (10(10) cfu ml(-1) was used; the opposite occurred with non-fat skim milk. The use of 10(10) cfu ml(-1) as an initial concentration, sucrose as a protectant and non-fat skim milk as a rehydration medium enabled 100% of P. agglomerans viability to be conserved after freeze-drying. Results suggest the possibility of achieving a good formulation system for the studied biocontrol agent with a high number of viable cells to be used toward pathogens, which is desirable for the industrial development of the product.  相似文献   

10.
A study was conducted to determine the significance of starvation resistance to the ability of a species to survive in sewage and lake water. Tests were conducted for periods of up to 14 days. Rhizobium meliloti and one fluorescent and one nonfluorescent strain of Pseudomonas were resistant to starvation because their population sizes did not fall appreciably in buffer and sterile lake water, and the first two maintained high numbers after being added to sterile sewage. Cell densities of these bacterial species dropped slowly in nonsterile sewage, and more cells of these three organisms than of the other test organisms remained in nonsterile lake water. Rhizobium leguminosarum was moderately resistant to starvation because its numbers fell slowly in buffer and sterile lake water and did not change appreciably in sterile sewage. The abundance of Micrococcus flavus added to buffer and sterile lake water did not change, but the density of M. flavus declined in nonsterile lake water. The abundance of R. leguminosarum fell in nonsterile lake water and nonsterile sewage. Streptococcus faecalis, Staphylococcus aureus, an asporogenous strain of Bacillus subtilis, and Streptococcus sp. were susceptible to starvation because their populations were markedly reduced in buffer. Populations of the last three species declined rapidly in nonsterile and sterile samples of lake water and sewage. S. faecalis declined rapidly when added to nonsterile lake water and sewage and sterile lake water but not when added to sterile sewage, the persistence in the last instance probably being associated with the availability of organic nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Three Rhizobium japonicum strains and two slow-growing cowpea-type Rhizobium strains were found to remain viable and able to rapidly modulate their respective hosts after being stored in purified water at ambient temperatures for periods of 1 year and longer. Three fast-growing Rhizobium species did not remain viable under the same water storage conditions. After dilution of slow-growing Rhizobium strains with water to 10(3) to 10(5) cells ml-1, the bacteria multiplied until the viable cell count reached levels of between 10(6) and 10(7) cells ml-1. The viable cell count subsequently remained fairly constant. When the rhizobia were diluted to 10(7) cells ml-1, they did not multiply, but full viability was maintained. If the rhizobia were washed and suspended at 10(9) cells ml-1, viability slowly declined to 10(7) cells ml-1 during 9 months of storage. Scanning electron microscopy showed that no major morphological changes took place during storage. Preservation of slow-growing rhizobia in water suspensions could provide a simple and inexpensive alternative to current methods for the preservation of rhizobia for legume inoculation.  相似文献   

12.
W. Foulds 《Plant and Soil》1971,35(1-3):665-667
Summary Three samples of soil were air dried and the reduction in population ofRhizobium meliloti, Rhizobium trifolii and a rhizobium of the ‘Lotus’ group was estimated by use of a plant-infection technique. The cells ofRhizobium trifolii proved to be more tolerant of the severe drought than did the cells of the other two species.  相似文献   

13.
Three Rhizobium japonicum strains and two slow-growing cowpea-type Rhizobium strains were found to remain viable and able to rapidly modulate their respective hosts after being stored in purified water at ambient temperatures for periods of 1 year and longer. Three fast-growing Rhizobium species did not remain viable under the same water storage conditions. After dilution of slow-growing Rhizobium strains with water to 10(3) to 10(5) cells ml-1, the bacteria multiplied until the viable cell count reached levels of between 10(6) and 10(7) cells ml-1. The viable cell count subsequently remained fairly constant. When the rhizobia were diluted to 10(7) cells ml-1, they did not multiply, but full viability was maintained. If the rhizobia were washed and suspended at 10(9) cells ml-1, viability slowly declined to 10(7) cells ml-1 during 9 months of storage. Scanning electron microscopy showed that no major morphological changes took place during storage. Preservation of slow-growing rhizobia in water suspensions could provide a simple and inexpensive alternative to current methods for the preservation of rhizobia for legume inoculation.  相似文献   

14.
This study evaluated the changes in root length, mass, and diameter after air drying and rehydration of corn (Zea mays L.) root samples. For corn roots washed from soil, rehydrated root length was not reduced when compared with fresh root length, but rehydrated root mass was reduced to about half of fresh root mass, and rehydrated root diameter was approximately 75% of fresh diameter. Three storage methods (air dried, 70% ethanol, and 5% formaldehyde solution) were also compared for corn roots grown in moist paper towels. Although root mass and diameter were significantly reduced by air drying, root length was not altered by any of the treatments.  相似文献   

15.
Enterobacter sakazakii may be related to outbreaks of meningitis, septicemia, and necrotizing enterocolitis, mainly in neonates. To reduce the risk of E. sakazakii in baby foods, thermal characteristics for Korean E. sakazakii isolates were determined at 52, 56, and 60 degrees C in saline solution, rehydrated powdered infant formula, and dried baby food. In saline solution, their D-values were 12-16, 3-5, and 0.9-1 min for each temperature. D-values increased to 16-20, 4-5, and 2-4 min in rehydrated infant formula and 14-17, 5-6, and 2-3 min in dried baby food. The overall calculated z-value was 6-8 for saline, 8-10 for powdered infant formula, and 9-11 for dried baby food. Thermal inactivation of E. sakazakii during rehydration of powdered infant formula was investigated by viable counts. Inactivation of cultured E. sakazakii in infant formula milk did not occur for 20 min at room temperature after rehydration with the water at 50 degrees C and their counts were reduced by about 1-2 log CFU/g at 60 degrees C and 4-6 log CFU/ml with the water at 65 and 70 degrees C. However, the thermostability of adapted E. sakazakii to the powdered infant formula increased more than two times. Considering that the levels of E. sakazakii observed in powdered infant formula have generally been 1 CFU/100 g of dry formula or less, contamination with E. sakazakii can be reduced or eliminated by rehydrating water with at least 10 degrees C higher temperature than the manufacturer-recommended 50 degrees C.  相似文献   

16.
The onset and development of both the ability to germinate andto tolerate rapid enforced desiccation were investigated duringthe development and maturation of seeds of bean (Phaseolus vulgahsL.) at different temperatures and also after different slow-dryingtreatments. The onset of germinability occurred when seeds wereless than half-filled in the absence of both a post-ovule abscissionprogramme and water loss from the seeds. Maximum ability togerminate normally and maximum tolerance to rapid enforced desiccationto 14–16% moisture content did not occur until 2–23d and 6–23 d after mass maturity (end of the seed-fillingperiod), respectively. The slow-drying of immature seeds for7 d ex planta before rapid enforced desiccation increased theability to germinate and stimulated the onset of desicationtolerance. Holding seeds moist for 7 d (during which time moisturecontent declined by <5%) had similar effects, but seed germinationafter rapid enforced desiccation was consistently greater inseeds first dried slowly than held moist. Comparisons betweenseeds less than half-filled dried slowly ex planta and fullseeds undergoing maturation drying in planta showed that a similar(slow) rate of water loss over a 7 d period had a similar effecton the subsequent ability of seeds to tolerate rapid enforceddesiccation. Thus, neither a post-ovule abscission programmenor loss of water were required for the onset of the abilityto germinate in developing bean seeds, but both were requiredfor the development of the ability to germinate and resistanceto solute leakage, when rehydrated, after rapid enforced desiccation. Key words: Bean, Phaseolus vulgaris L., seed germination, seed development, desiccation tolerance  相似文献   

17.
A study was conducted to determine the significance of starvation resistance to the ability of a species to survive in sewage and lake water. Tests were conducted for periods of up to 14 days. Rhizobium meliloti and one fluorescent and one nonfluorescent strain of Pseudomonas were resistant to starvation because their population sizes did not fall appreciably in buffer and sterile lake water, and the first two maintained high numbers after being added to sterile sewage. Cell densities of these bacterial species dropped slowly in nonsterile sewage, and more cells of these three organisms than of the other test organisms remained in nonsterile lake water. Rhizobium leguminosarum was moderately resistant to starvation because its numbers fell slowly in buffer and sterile lake water and did not change appreciably in sterile sewage. The abundance of Micrococcus flavus added to buffer and sterile lake water did not change, but the density of M. flavus declined in nonsterile lake water. The abundance of R. leguminosarum fell in nonsterile lake water and nonsterile sewage. Streptococcus faecalis, Staphylococcus aureus, an asporogenous strain of Bacillus subtilis, and Streptococcus sp. were susceptible to starvation because their populations were markedly reduced in buffer. Populations of the last three species declined rapidly in nonsterile and sterile samples of lake water and sewage. S. faecalis declined rapidly when added to nonsterile lake water and sewage and sterile lake water but not when added to sterile sewage, the persistence in the last instance probably being associated with the availability of organic nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Dhindsa RS 《Plant physiology》1987,85(4):1094-1098
Rapidly dried Tortula ruralis, a drought-tolerant moss, is known to synthesize proteins on rehydration at a much lower rate than the slowly dried moss. The reasons for this low rate of protein synthesis are unclear. We have found that during rehydration of rapidly dried moss, there is a negative correlation between the rate of protein synthesis and the tissue levels of oxidized glutathione (GSSG) and lipid peroxidation. When rapidly dried moss, which is known to show extensive solute leakage, is rehydrated in the presence of 100 millimolar K+, 5 millimolar Mg2+, 1 millimolar ATP, and 1 millimolar GTP, either separately or together, there is no stimulation of protein synthesis. When it is hydrated in the presence of either 5 millimolar glucose-6-phosphate or 0.1 millimolar NADPH, protein synthesis is stimulated but the stimulation is transitory. A second addition of either of these two chemicals causes a second transient stimulation of protein synthesis. A transitory decrease in the rate of GSSG accumulation is observed during rehydration in the presence of glucose-6-phosphate or NADPH. Both glucose-6-phosphate and NADPH are known to reverse GSSG-induced inhibition of protein synthesis in rabbit reticulocyte lysate. Results of the present study suggest that the rate of protein synthesis during rehydration of rapidly dried moss is not limited by the availability of ions or energy sources. Since exogenously applied GSSG has been shown to inhibit in vivo and in vitro protein synthesis and since it is known to accumulate during rehydration of rapidly dried, but not slowly dried, moss, it is suggested that the low rate of protein synthesis during rehydration of the rapidly dried moss is, at least in part, due to endogenous GSSG.  相似文献   

19.
Reduction of water activity in the formulations of mosquito biocontrol agent, Bacillus thuringiensis var. israelensis is very important for long term and successful storage. A protocol for spray drying of B. thuringiensis var. israelensis was developed through optimizing parameters such as inlet temperature and atomization type. A indigenous isolate of B. thuringiensis var. israelensis (VCRC B-17) was dried by freeze and spray drying methods and the moisture content and mosquito larvicidal activity of materials produced by the two methods were compared. The larvicidal activity was checked against early fourth instars Aedes aegypti larvae. Results showed that the freeze-dried powders retained the larvicidal activity fairly well. The spray-dried powder moderately lost its larvicidal activity at different inlet temperatures. Between the two types of atomization, centrifugal atomization retained more activity than the nozzle type atomization. Optimum inlet temperature for both centrifugal and nozzle atomization was 160 degrees C. Keeping the outlet temperature constant at 70 degrees C the moisture contents for the spray-dried powders through centrifugal atomization and freeze-dried powders were 10.23% and 11.80%, respectively. The LC(50) values for the spray-dried and freeze-dried powders were 17.42 and 16.18 ng/mL, respectively. Spore count of materials before drying was 3 x 10(10) cfu/mL and after spray drying through nozzle and centrifugal atomization at inlet and outlet temperature of 160 degrees C/70 degrees C were 2.6 x 10(9) and 5.0 x 10(9) cfu/mL, respectively.  相似文献   

20.
Legume root-nodules, dried at oven temperature (70°C for 48 h) were suitable for Rhizobium strain identification by immunofluorescence and agglutination. The fluorescence of bacteroids of R. japonicum, R. leguminosarum, R. meliloti, R. phaseoli , and Rhizobium spp. from oven-dried nodules was the same as those from frozen, desiccated, or nodules dried at room temperature (28°C). Oven-dried nodules did not require further steaming for agglutination. Bacteroid agglutinations gave 2–16 fold lower titres than those of the cultured cells. Fresh and oven-dried soybean rhizobia from a mixed inoculation gave exactly the same results when identified by immunofluorescence or agglutination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号