首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Giardia lamblia, a protozoan parasite of the small intestine of humans and other animals, undergoes surface antigenic variation. The antigens involved belong to a family of variant-specific surface proteins (VSPs), which are unique, cysteine-rich zinc finger proteins. The patterns of infection in humans and animals fail to show the expected cyclical waves of increasing and decreasing numbers of parasites expressing unique VSPs. Nevertheless, changes in VSP expression occur within the population in vivo owing to selection of VSPs by both immune and non-immune mechanisms. After inoculation of a single G. lamblia clone (able to persist in the absence of immune pressure) expressing one VSP (> or = 90%) into mice or humans, the original VSP continues to be expressed until 2 weeks post inoculation (p.i.), when many other VSPs gradually replace it. Selection by immune-mediated processes is suggested because switching occurs at the same time that humoral responses are first detected. In most mouse strains, switching also occurs at about two weeks. Almost all trophozoites are eliminated at three weeks (p.i.), but a barely detectable infection persists over months. In neonatal mice, apparent self-cure is delayed until the sixth or seventh week. Antigenic switching does not occur in adult or neonatal severe combined immunodeficiency disease (SCID) mice, but does occur in neonatal nude mice, thus implicating B-cell-mediated mechanisms in immune switching. Not all VSPs are expressed to the same degree in vivo. Some VSPs appear to be preferentially selected whereas others are eliminated on a non-immune basis. In infections in which immunity does not play a role, such as in SCID mice, and during the first week of infection in immunocompetent mice or gerbils, persisting VSPs are preferentially expressed and maintained whereas non-persisting VSPs are replaced within the first week of infection. The purpose of antigenic variation may be presentation of a wide assortment of VSPs to hosts, increasing the chance of a successful initial infection or reinfection. Immune selection of variants comes into play following biological selection.  相似文献   

2.
3.
Giardia lamblia, a common intestinal dwelling protozoan and a cause of diarrhoea in humans and animals world-wide, undergoes surface antigenic variation. The variant-specific surface proteins (VSPs) are a family of related, highly unusual proteins that cover the entire surface of the parasite. VSPs are cysteine-rich proteins containing many CXXC motifs, one or two GGCY motifs, a conserved hydrophobic tail and a Zn finger motif. The biological role(s) of VSPs is unclear. As VSPs are resistant to the effects of intestinal proteases, they likely allow the organism to survive in the protease-rich small intestine. Although immune escape is commonly mentioned as the reason antigenic variation occurs, VSP expression changes in vivo even in the absence of an adaptive immune system suggesting the biological role of antigenic variation is more complex. The molecular mechanisms involved in antigenic variation are not known but appear to differ from those known to occur in other protozoa.  相似文献   

4.
Surface antigen variability and variation in Giardia lamblia   总被引:22,自引:0,他引:22  
Recent studies show that Giardia isolates are heterogeneous but fall into at least three groups as determined by a number of complementary techniques. Giardia undergoes surface antigenic variation, both in vitro, and in humans and other animal model infections. Many of the characteristics of antigenic variation and the proteins involved, called variant-specific surface proteins (VSPs), are unique. The sequences of five VSPs reveal a family of cysteine-rich proteins. Here Theodore Nash reviews the relationship between antigenic variation and Giardia heterogeneity.  相似文献   

5.
6.
7.
The trophozoites of Giardia duodenalis express variant surface proteins (VSPs) that cover the entire surface of the cell and can be altered by antigenic variation. In the present study, a VSP (VSPH7) expressed by the Giardia GS isolate was purified using Triton-X-114 extraction/phase partitioning and a combination of column chromatography methods. The purified VSP was typed by mass spectrometric fingerprint mapping and peptide sequencing and found to share 58-99.8% peptide identity with the VSPH7 protein sequence previously deduced from the cloned cDNA. Carbohydrate compositional analyses consistently showed the presence of galactose in the VSP preparations but a direct association of carbohydrate with the VSPH7 could not be established. Analysis of the C-terminal part of the purified VSPH7 by off-blot myo-inositol analysis provided for the first time direct experimental evidence that this protein is not modified via a GPI lipid.  相似文献   

8.
The intestinal protozoan parasite Giardia lamblia undergoes surface antigenic variation whereby one of a family of structurally related variant-specific surface proteins (VSPs) is replaced in a regulated process by another antigenically distinct VSP. All VSPs are type I membrane proteins that have a conserved hydrophobic sequence terminated by the invariant hydrophilic amino acids, CRGKA. Using transfected Giardia constitutively expressing HA-tagged VSPH7 and incubated with radioactive [3H]palmitate, we demonstrate that the palmitate is attached to the Cys in the conserved CRGKA tail. Surface location of mutant VSPs lacking either the CRGKA tail or its Cys is identical to that of wild-type VSPH7 but non-palmitoylated mutants fail to undergo complement-independent antibody specific cytotoxicity. In addition, membrane localization of non-palmitoylated mutant VSPH7 changes from a pattern similar to rafts to non-rafts. Palmitoyl transferases (PAT), responsible for protein palmitoylation in other organisms, often possess a cysteine-rich domain containing a conserved DHHC motif (DHHC-CRD). An open reading frame corresponding to a putative 50 kDa Giardia PAT (gPAT) containing a DHHC-CRD motif was found in the Giardia genome database. Expression of epitope-tagged gPAT using a tetracycline inducible vector localized gPAT to the plasma membrane, a pattern similar to that of VSPs. Transfection with gPAT antisense producing vectors inhibits gPAT expression and palmitoylation of VSPs in vitro confirming the function of gPAT. These results show that VSPs are palmitoylated at the cysteine within the conserved tail by gPAT and indicate an essential function of palmitoylation in control of VSP-mediated signalling and processing.  相似文献   

9.
10.
During infection, the intestinal protozoan parasite Giardia lamblia undergoes continuous antigenic variation which is determined by diversification of the parasite's major surface antigen, named VSP (variant surface protein). One member from this protein family, VSP H7, is expressed by G. lamblia clone GS/M-83-H7. In the present study, we characterised a highly antigenic portion of VSP H7 which is positioned inside a 130 amino acid C-terminal region of the protein. This region overlaps with a cysteine-rich motif that is rather conserved within the VSP family. Detailed molecular dissection of the antigenic portion monitored a 12 amino acid peptidyl structure which constitutes a non-conformational epitope of VSP H7. In the murine host, this epitope is recognised relatively early (before day 10 p.i.) during infection and stimulates a strong intestinal immunoglobulin A response. At late infective stages (after day 10 p.i.) this immune reaction is progressively complemented by reactions against 'late' antigenic epitopes which are also located inside the 130 amino acid antigenic portion but in closer proximity to the C-terminal end of VSP H7 than the 12 amino acid epitope. Both the high antigenicity and the conserved character suggest that the 12 amino acid epitope is a key factor within the immunological interplay between G. lamblia and the experimental murine host.  相似文献   

11.
The protozoan parasite Giardia lamblia is an important causative agent of acute or chronic diarrhoea in humans and various animals. During infection, the parasite survives the hosts reactions by undergoing continuous antigenic variation of its major surface antigen, named VSP (variant surface protein). The VSPs form a unique family of cysteine-rich proteins that are extremely heterogeneous in size. The relevance of antigenic variation for the survival in the host has been most successfully studied by performing experimental infections in a combined mother/offspring mouse system and by using the G. lamblia clone GS/M-83-H7 (human isolate) as model parasite. In-vivo antigenic variation of G. lamblia clone GS/M-83-H7 is characterised by a diversification of the intestinal parasite population into a complex mixture of different variant antigen types. It could be shown that maternally transferred lactogenic anti-VSP IgA antibodies exhibit cytotoxic activity on the Giardia variant-specific trophozoites in suckling mice, and thus express a modulatory function on the proliferative parasite population characteristics. Complementarily, in-vitro as well as in-vivo experiments in adult animals indicated that non-immunological factors such as intestinal proteases may interfere into the process of antigen variation in that they favour proliferation of those variant antigen-type populations which resist the hostile physiological conditions within the intestine. These observations suggest that an interplay between immunological and physiological factors, rather than one of these two factor alone, modulates antigenic diversification of a G. lamblia population within an experimental murine host and thus influences the survival rate and strategy of the parasite.  相似文献   

12.
Antigenic variation in Giardia lamblia   总被引:4,自引:0,他引:4  
Giardia lamblia undergo surface antigenic variation in vitro and in vivo. The presence of variant trophozoites can be detected in clones after exposure to cytotoxic monoclonal antibodies. Surviving Giardia (progeny) no longer possess the initial major surface antigen which is replaced by new antigens. Exposure of a clone from one progeny to another cytotoxic mAb specific to one newly appearing surface antigen resulted in the loss of this antigen and replacement by another set of antigens. The frequency of change was rapid (1:100-1:1000) and was dependent upon the isolate. The presence of variant populations in clones was confirmed by direct and indirect immunofluorescence using mAbs to major surface antigens of subsequent progeny. The putative amino acid sequence of a portion of one antigen revealed a cysteine-rich composition which was confirmed in this variant protein as well as others by preferential uptake of [35S]cysteine. The mechanism(s) responsible most likely involves genomic rearrangements since Southern blots revealed a family of related genes which changed frequently compared to other areas of the genome. However, expression-linked copies have not been detected. Loss and gain of surface antigens have also been found in gerbils and humans infected with defined clones, but there does not appear to be cyclical appearance of variant populations. The biological importance of antigenic variation is not known but it may contribute to chronic and/or repeated infections.  相似文献   

13.
Saraiya AA  Li W  Wang CC 《RNA (New York, N.Y.)》2011,17(12):2152-2164
We have previously shown that a snoRNA-derived microRNA, miR2, in Giardia lamblia potentially regulates the expression of 22 variant surface protein (VSP) genes. Here, we identified another miRNA, miR4, also capable of regulating the expression of several VSPs but derived from an unannotated open reading frame (ORF) rather than a snoRNA, suggesting a canonical miRNA biogenesis pathway in Giardia. miR4 represses expression of a reporter containing two miR4 antisense sequences at the 3' UTR without causing a corresponding decrease in the mRNA level. This repression requires the presence of the Giardia Argonaute protein (GlAgo) and is reversed by 2' O-methylated antisense oligo to miR4, suggesting an RNA-induced silencing complex (RISC)-mediated mechanism. Furthermore, in vivo and in vitro evidence suggested that the Giardia Dicer protein (GlDcr) is required for miR4 biogenesis. Coimmunoprecipitation of miR4 with GlAgo further verified miR4 as a miRNA. A total of 361 potential target sites for miR4 were bioinformatically identified in Giardia, out of which 69 (32.7%) were associated with VSP genes. miR4 reduces the expression of a reporter containing two copies of the target site from VSP (GL50803_36493) at the 3' UTR. Sixteen of the 69 VSP genes were further found to contain partially overlapping miR2 and miR4 targeting sites. Expression of a reporter carrying the two overlapping sites was inhibited by either miR2 or miR4, but the inhibition was neither synergistic nor additive, suggesting a complex mechanism of miRNA regulation of VSP expression and the presence of a rich miRNAome in Giardia.  相似文献   

14.
Giardia lamblia consist of heterogeneous isolates that can be divided into at least three groups. Differential screening of a cDNA library with isolate-specific antisera identified a gene which is expressed and found only in Group 3 isolates. This gene, GLORF-C4, is 597 bp in length and predicts a deduced protein of 198 amino acids that is characterized by a polyserine motif. Giardia can also be grouped by their ability to express certain variant-specific surface proteins (VSPs), expression of which is restricted among groups. In Southern blots, probes specific to two VSPs were used to characterize isolates. Failure to detect VSP genes correlated with inability to express the same VSP. Analysis of isolates with these new probes complements and confirms the groupings previously suggested using other criteria. These genetic differences should allow differentiation of isolates and permit the application of basic epidemiological techniques to determine the manner of spread and the presence of animal reservoirs.  相似文献   

15.
Giardia lamblia is an intestinal protozoan parasite infecting humans and various other mammalian hosts. The most important clinical signs of giardiasis are diarrhoea and malabsorption. Giardia lamblia is able to undergo continuous antigenic variation of its major surface antigen, named VSP (variant surface protein). While intestinal antibodies, and more specifically anti-VSP IgA antibodies, were proven to be involved in modulating antigenic variation of the parasite the participation of the local antibody response in control of the parasite infection is still controversial. Conversely, previous studies based on experimental infections in mice showed that cellular immune mechanisms are essential for elimination of the parasite from its intestinal habitat. Furthermore, recent data indicated that inflammatory mast cells have a potential to directly, or indirectly, interfere in duodenal growth of G. lamblia trophozoites. However, this finding was challenged by other reports, which did not find a correlation between intestinal inflammation and resistance to infection. Since intestinal infiltration of inflammatory cells and/or CD8+T-cells were demonstrated to coincide with villus-shortening and crypt hyperplasia immunological reactions were considered to be a potential factor of pathogenesis in giardiasis. The contribution of physiological factors to pathogenesis was essentially assessed in vitro by co-cultivation of G. lamblia trophozoites with epithelial cell lines. By using this in vitro model, molecular (through surface lectins) and mechanical (through ventral disk) adhesion of trophozoites to the epithelium was shown to be crucial for increased epithelial permeability. This phenomenon as well as other Giardia-induced intestinal abnormalities such as loss of intestinal brush border surface area, villus flattening, inhibition of disaccharidase activities, and eventually also overgrowth of the enteric bacterial flora seem to be involved in the pathophysiology of giardiasis. However, it remains to be elucidated whether at least part of these pathological effects are causatively linked to the clinical manifestation of the disease.  相似文献   

16.
Frequency of variant antigens in Giardia lamblia.   总被引:2,自引:0,他引:2  
Giardia lamblia undergoes antigenic variation. The rate of antigenic variation and the size of the variant antigen repertoire were estimated in clones of Giardia lamblia which reexpresses surface variant antigens that are characteristics of its parent. Calculations were based on determinations of the number of trophozoites expressing defined or nondefined epitopes as well as the total number of trophozoites in newly established clones. The rate of appearance of variant antigens containing defined epitopes was expressed as the number of generations until the first trophozoite expressing a defined epitope appeared. In clones of isolate WB, tested because their major surface variant antigens were largely nondefined, variants expressing epitopes recognized by Mabs 6E7 or 3F6 appeared after approximately 12 generations. Variants expressing epitopes recognized by Mab 5C1 appeared at about 13 generations, significantly greater than for the other epitopes. The rate of antigenic variation was studied in another isolate, GS/M, whose surface epitope repertoire differs from that of isolate WB. A single epitope recognized by Mab G10/4 was tested. Trophozoites reexpressing this epitope first appeared after about 6.5 generations, significantly less than in WB. Therefore, the single epitope studied in isolate GS/M is reexpressed much more frequently than those of WB. In isolate WB, the epitopes recognized by Mab 6E7 and 3F6 tended to appear at the same time. The median number of variant antigens in WB was estimated to lie between 20.5 and 184.  相似文献   

17.
18.
Giardia duodenalis is a protozoan parasite of the small intestine in vertebrates, including humans. Assemblage A of G. duodenalis is one of the two discrete subtypes that infects humans, and is considered a zoonotic assemblage. Two G. duodenalis Assemblage A strains BRIS/95/HEPU/2041 and BRIS/83/HEPU/106, constituting virulent and control strains respectively, were analyzed in one of the first comparative shotgun proteomic studies performed in this parasite. Protein extracts were prepared using a multiplatform approach with both an in‐gel and in‐solution sample preparation to enable us to assess the complementarity for future Giardia proteomic studies. Protein analysis revealed that BRIS/95/HEPU/2041 possessed a wider and more varied repertoire of variant surface proteins (VSPs), which are hypothesized to be involved in host adaptation, immune evasion, and virulence. A total of 35 VSPs were identified, with three common to both strains, six unique to BRIS/82/HEPU/106, and twenty‐six unique to BRIS/95/HEPU/2041. Additionally, up to 25.6% of all differentially expressed proteins in BRIS/95/HEPU/2041 belonged to the VSP family, a trend not seen in the control BRIS/83/HEPU/106. Greater antigen variation in BRIS/95/HEPU/2041 may explain aspects of virulence phenotypes in G. duodenalis, with a highly diverse population capable of evading host immune responses.  相似文献   

19.
Bibo Li 《Eukaryotic cell》2015,14(3):196-205
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号