首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum   总被引:2,自引:0,他引:2  
AIMS: Natural fungal products were screened for antifungal compounds. The mode of action of one of the hits found and the taxonomy of the producing organism were analysed. METHODS AND RESULTS: An extract from a Trichoderma species showed a more potent activity in an agar-based assay against the null mutant fks1::HIS strain than against the wild-type strain, suggesting that it could contain a glucan synthesis inhibitor. The active component was identified as the known compound ergokonin A. The compound exhibited activity against Candida and Aspergillus species, but was inactive against Cryptococcus species. It induced alterations in the hyphal morphology of Aspergillus fumigatus. The identification of the producing isolate was confirmed by sequencing of the rDNA internal transcribed spacers and comparison with the sequences of other Trichoderma species. The analysis showed that the producing fungus had a high homology with other strains classified as Trichoderma longibrachiatum and its teleomorph Hypocrea schweinitzii. CONCLUSIONS: The antifungal activity spectrum of ergokonin A and the morphology alterations induced on A. fumigatus are consistent with glucan synthesis as the target for ergokonin A. The production of ergokonin A is not uncommon, but is probably restricted to Trichoderma species. SIGNIFICANCE AND IMPACT OF THE STUDY: The discovery that ergokonin A could be an inhibitor of glucan synthesis, having a structure very different to other inhibitors, increases the likelihood that orally active agents with this fungal-specific mode of action may be developed.  相似文献   

2.
More than 1200 isolates of lactic acid bacteria isolated from different environments were screened for antifungal activity in a dual-culture agar plate assay. Approximately 10% of the isolates showed inhibitory activity and 4% showed strong activity against the indicator mould Aspergillus fumigatus. The antifungal spectra for 37 isolates with strong activity and five isolates with low or no activity were determined. Several of the strains showed strong inhibitory activity against the moulds A. fumigatus, Aspergillus nidulans, Penicillium commune and Fusarium sporotrichioides, and also against the yeast Rhodotorula mucilaginosa. Penicillium roqueforti and the yeasts Pichia anomala and Kluyveromyces marxianus were not inhibited. Several isolates showed reduced antifungal activity after storage and handling. The majority of the fungal inhibitory isolates were identified by 16S rDNA sequencing as Lactobacillus coryniformis. Lactobacillus plantarum and Pediococcus pentosaceus were also frequently identified among the active isolates. The degree of fungal inhibition was not only related to production of lactic or acetic acid. In addition, antifungal cyclic dipeptides were identified after HPLC separation and several other active fractions were found suggesting a highly complex nature of the antifungal activity.  相似文献   

3.
The purpose of this work was to screen clinical isolates of actinomycetes producing nonpolyenic antifungals. This choice was made to limit the problem of rediscovery of well-known antifungal families, especially polyenic antifungals. One hundred and ten strains were tested, using two diffusion methods and two test media, against three yeast species and three filamentous fungi. Among 54 strains (49%) showing antifungal activity, five strains belonging to the genus Streptomyces were active against all test organisms and appeared promising. These results indicate that clinical and environmental isolates of actinomycetes could be an interesting source of antifungal bioactive substances. The production of nonpolyenic antifungal substances by these five active isolates was investigated using several criteria: antibacterial activity, ergosterol inhibition, and UV-visible spectra of active extracts. One active strain responded to all three selection criteria and produced potentially nonpolyenic antifungal metabolites. This strain was retained for further investigation, in particular, purification, structure elucidation, and mechanism of action of the active product.  相似文献   

4.
Twenty epiphytic and rhizospheric bacterial strains harbouring strong antifungal activities were isolated from the Tunisian environment. This group of bacteria was identified as Burkholderia cepacia genomovar I using 16S rDNA and recA fragment gene sequence analyses for two selected strains and RFLP technique for the eighteen other ones. This identification did not show variability between isolates despite the significant differences in the antifungal activities of their culture supernatant and the organic crude extract against Aspergillus niger and other phytopathogenic fungi. Chromatographic and mass spectrometric analyses of these extracts allowed us to confirm the difference between strains of the group. Their metabolic production showed differences in term of contents and quantities of secreted molecules, particularly those which were identified to be involved in the antifungal activities. Two metabolites, named Bc-255 and Bc-257 secreted by the entire group at different amounts, have been purified and tested separately against A. niger. Bc-255 showed an activity twice as high as those shown by Bc-257. The structural characterization of these two compounds by mass spectrometry and nuclear magnetic resonance spectroscopy allowed their identification as two analogous 2-alkylquinolones with only one difference at the alkyl chain.  相似文献   

5.
A number of benzoic acid analogues showed antifungal activity against strains of Aspergillus flavus, Aspergillus fumigatus and Aspergillus terreus, causative agents of human aspergillosis, in in vitro bioassays. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased by addition of a methyl, methoxyl or chloro group at position 4 of the aromatic ring, or by esterification of the carboxylic acid with an alkyl group, respectively. Thymol, a natural phenolic compound, was a potent chemosensitizing agent when co-applied with the antifungal azole drugs fluconazole and ketoconazole. The thymol-azole drug combination demonstrated complete inhibition of fungal growth at dosages far lower than the drugs alone. Co-application of thymol with amphotericin B had an additive effect on all strains of aspergilli tested with the exception of two of three strains of A. terreus, where there was an antagonistic effect. Use of two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus, sakAΔ and mpkCΔ, having gene deletions in the oxidative stress response pathway, indicated antifungal and/or chemosensitization activity of the benzo analogues was by disruption of the oxidative stress response system. Results showed that both these genes play overlapping roles in the MAPK system in this fungus. The potential of safe, natural compounds or analogues to serve as chemosensitizing agents to enhance efficacy of commercial antifungal agents is discussed.  相似文献   

6.
A total of 220 lactic acid bacteria isolates were screened for antifungal activity using Aspergillus fumigatus and Aspergillus niger as the target strains. Four Lactobacillus strains exhibited strong inhibitory activity on agar surfaces. All four were also identified as having strong inhibitory activity against the human pathogenic fungi Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. One of the four lactobacilli, namely Lb. reuteri ee1p exhibited the most inhibition against dermatophytes. Cell-free culture supernatants of Lb. reuteri ee1p and of the non-antifungal Lb. reuteri M13 were freeze-dried and used to access and compare antifungal activity in agar plate assays and microtiter plate assays. Addition of the Lb. reuteri ee1p freeze-dried cell-free supernatant powder into the agar medium at concentrations greater than 2% inhibited all fungal colony growth. Addition of the powder at 5% to liquid cultures caused complete inhibition of fungal growth on the basis of turbidity. Freeze-dried supernatant of the non-antifungal Lb. reuteri M13 at the same concentrations had a much lesser effect. As Lb. reuteri M13 is very similar to the antifungal strain ee1p in terms of growth rate and final pH in liquid culture, and as it has little antifungal activity, it is clear that other antifungal compounds must be specifically produced (or produced at higher levels) by the anti-dermatophyte strain Lb. reuteri ee1p. Reuterin was undetectable in all four antifungal strains. The cell free supernatant of Lb. reuteri ee1p was analyzed by LC-FTMS using an Accela LC coupled to an LTQ Orbitrap XL mass spectrometer. The high mass accuracy spectrum produced by compounds in the Lb. reuteri ee1p strain was compared with both a multianalyte chromatogram and individual spectra of standard anti-fungal compounds, which are known to be produced by lactic acid bacteria. Ten antifungal metabolites were detected.  相似文献   

7.
Synthesis and antifungal activity of 6-hydroxycinnolines   总被引:1,自引:0,他引:1  
6-Hydroxycinnolines 2 and cyclohexa-2,5-diene-1,4-dione derivatives 6 were synthesized and tested for in vitro antifungal activity against Candida and Aspergillus species. 6-Hydroxycinnolines 2 showed, in general, more potent antifungal activity against Candida species than the other cyclohexa-2,5-diene-1,4-diones. The results suggest that 6-hydroxycinnolines would be potent antifungal agents.  相似文献   

8.
Anidulafungin is a new and very useful pharmacological tool for the treatment of invasive mycoses. The antifungal spectrum of anidulafungin reaches the most common pathogenic fungi. Anidulafungin is especially active against the genera Candida and Aspergillus. Its antifungal mechanism is based on the inhibition of the beta-1,3-D-glucan synthesis, an essential molecule for the cell wall architecture, with different consequences for Candida and Aspergillus, being anidulafungin fungicide for the former and fungistatic for the latter. This review describes the in vitro antifungal spectrum of anidulafungin based in the scientific and medical literature of recent years. We can underline that most than 99% of Candida isolates are susceptible to < or = 2 microg/ml of anidulafungin. MIC are very low (< or =0.125 microg/ml) for most clinical isolates of the species Candida albicans, Candida glabrata, Candida tropicalis and Candida krusei while Candida parapsilosis and Candida guilliermondii isolates are susceptible to anidulafungin concentrations < or = 2 microg/ml. An excellent activity of anidulafungin has been also described against Aspergillus, Pneumocystis and other fungi. However, its activity is very low against Cryptococcus and the Zygomycetes. The excellent activity of anidulafungin has made this antifungal a first line therapeutic indication for candidemia and invasive candidiasis in non-neutropenic patients.  相似文献   

9.
Cruz P  Buttner MP 《Mycologia》2008,100(5):683-690
Aspergillus flavus is a ubiquitous mold and the most common mold contaminating foodstuffs. Many strains of A. flavus produce aflatoxins. In addition it is an allergen and an opportunistic pathogen of animals and plants. A. flavus often is underestimated in traditional culture analyses due to the expertise required and the cost associated with speciating members of the genus Aspergillus. The goal of this study was to develop and validate a primer and probe set for the rapid detection and quantitation of A. flavus in pure culture using real-time quantitative polymerase chain reaction (QPCR) amplification. Unique DNA regions were located in the genome of the target organism by sequence comparison with the GenBank database, and several candidate oligonucleotides were identified from the scientific literature for potential use with the TaqMan QPCR technology. Three primer and probe sets were designed and validated for specificity and sensitivity in laboratory experiments. Initial screening to test for sensitivity was performed with seven A. flavus isolates and selected nontarget fungi. Specificity testing was conducted with the selected primer and probe set, which amplified all nine A. flavus isolates tested, including an aflatoxin producing strain. The primers did not amplify DNA extracted from 39 other fungal species (comprising 16 genera), including 18 other Aspergillus species and six Penicillium species. No amplification of human or bacterial DNA was observed; however cross-reactivity was observed with Aspergillus oryzae. PCR analysis of DNA dilutions and the use of an internal positive control demonstrated that 67% of the fungal DNA samples assayed contained PCR inhibitors. The assay validated for the target organism is capable of producing PCR results in less than 1 h after DNA extraction. The results of this research demonstrate the capabilities of QPCR for the enhanced detection and enumeration of fungi of significance to human health.  相似文献   

10.
As part of a study on the ochratoxin producing mycoflora of grapes, several Aspergillus strains were isolated and tested for their ochratoxin A (OTA) producing abilities. Aspergillus strains of the section Nigri, which did not produce detectable amounts of OTA but which had a similar morphology to A. carbonarius, were isolated from wine grapes and/or dried vine fruit in Portugal and Spain. These strains, however, have characters that allow morphological distinction from the other species in the section, particularly the conidia size (5-7 microm), which allows separation of the species from the two most common biseriate species in section Nigri: A. carbonarius (7-9 microm) and A. niger and its aggregate species (3-5 microm). The strains are described here as belonging to a new species, named A. ibericus. The validation of this new taxon is supported further by analysis of the ITS-5.8S rDNA and calmodulin gene sequences and by analysis of the amplified fragment length polymorphism (AFLP) patterns, which were consistent in separating these strains from other species in the section. A. ibericus strains do not produce OTA therefore they are interesting for biotechnological exploration because many metabolites with commercial value are produced by other species in the section.  相似文献   

11.
采用研磨法从健康大花黄牡丹的根、茎、叶柄、叶和种子中进行菌种分离,依据其形态、培养特征及其他生物学特性对菌株进行初步鉴定;采用平板对峙法对分离的内生菌进行拮抗试验研究,并对强活性菌株进行16S rD-NA序列鉴定,以明确大花黄牡丹内生菌的种类,筛选对农作物病害有抑制作用的菌株.结果表明:(1)获得内生真菌188株,鉴定为10个属,以短蠕孢属(50%)、青霉孢属(18.6%)和曲霉孢属(12.3%)为优势种群.获得内生放线菌145株,以链霉菌属(98.6%)为优势种群.表明大花黄牡丹内生菌在数量和种类上存在极丰富的多样性,同时在不同组织存在一定的差异性.(2)抑菌试验结果显示,21.6%真菌对指示菌有抑菌作用,抑菌圈直径最大为10mm;27.8%放线菌对指示菌有抑菌作用,其中菌株PND31的抑菌活性较强,抑菌谱较广.(3)16S rDNA序列鉴定显示,菌株PND31与链霉菌属聚在一起,初步归为链霉菌属一个种.  相似文献   

12.
In the current study, twenty-eight soil samples were collected from coalmine sites of Telangana, India. The isolates were purified and identified based on their culture characterization on oatmeal agar, glycerol asparagine agar, yeast extract-malt extract agar, inorganic salt starch agar, and starch casein agar medium. Further, the supernatant of all the isolates were tested for antimicrobial and antifungal activities. The biochemical and microscopic studies of isolated strains results indicates the potential isolate strains belongs to Streptomyces genus. Among all the strains the biological activity of BHPL-KSKU5 showed higher anti-bacterial and anti-funagal activity. The molecular characterization of BHPL-KSKU5 16s rDNA gene sequence and phylogenetic tree showed that is mostly related to the Streptomysis felleus (S. felleus) strain. This isolate was submitted to gene bank NCBI with accession number MH553077. In addition, physiological studies such as utilization of carbon, nitrogen, amino acid sources of potential isolated were studied. Further, optimization, purification and characterization of the novel compound producing strain may be helpful for discovering the new therapeutic microbial agent.  相似文献   

13.
Echinocandins, the lipopeptide class of glucan synthase inhibitors, are an alternative to ergosterol-synthesis inhibitors to treat candidiasis and aspergillosis. Their oral absorption, however, is low and they can only be used parenterally. During a natural product screening program for novel types of glucan synthesis inhibitors with improved bioavailability, a fungal extract was found that inhibited the growth of both a wild-type Saccharomyces cerevisiae strain and the null mutant of the FKS1 gene (fks1::HIS). The mutant strain was more sensitive to growth inhibition, suggesting that the fungal extract could contain an inhibitor of glucan synthesis. A novel acidic steroid, named arundifungin, was purified from a fungal extract obtained from a liquid culture of Arthrinium arundinis collected in Costa Rica. Arundifungin caused the same pattern of hallmark morphological alterations in Aspergillus fumigatus hyphae as echinocandins, further supporting the idea that arundifungin belongs to a new class of glucan synthesis inhibitors. Moreover, its antifungal spectrum was comparable to those of echinocandins and papulacandins, preferentially inhibiting the growth of Candida and Aspergillus strains, with very poor activity against Cryptococcus. Arundifungin was also detected in nine other fungal isolates which were ecologically and taxonomically unrelated, as assessed by sequencing of the ITS1 region. Further, it was also found in two more Arthrinium spp from tropical and temperate regions, in five psychrotolerant conspecific isolates collected on Macquarie Island (South Pacific) and belonging to the Leotiales, and in two endophytes collected in central Spain (a sterile fungus belonging to the Leotiales and an undetermined coelomycete).  相似文献   

14.
The soybean is an exotic plant introduced in Paraguay in this century; commercial cropping expanded after the 1970s. Inoculation is practiced in just 15 to 20% of the cropping areas, but root nodulation occurs in most sites where soybeans grow. Little is known about rhizobial diversity in South America, and no study has been performed in Paraguay until this time. Therefore, in this study, the molecular characterization of 78 rhizobial isolates from soybean root nodules, collected under field conditions in 16 sites located in the two main producing states, Alto Paraná and Itapúa, was undertaken. A high level of genetic diversity was detected by an ERIC-REP-PCR analysis, with the majority of the isolates representing unique strains. Most of the 58 isolates characterized by slow growth and alkaline reactions in a medium containing mannitol as a carbon source were clustered with strains representative of the Bradyrhizobium japonicum and Bradyrhizobium elkanii species, and the 16S ribosomal DNA (rDNA) sequences of 5 of those isolates confirmed the species identities. However, slow growers were highly polymorphic in relation to the reference strains, including five carried in commercial inoculants in neighboring countries, thus indicating that the Paraguayan isolates might represent native bradyrhizobia. Twenty isolates highly polymorphic in the ERIC-REP-PCR profiles were characterized by fast growth and acid reactions in vitro, and two of them showed high 16S rDNA identities with Rhizobium genomic species Q. However, two other fast growers showed high 16S rDNA identity with Agrobacterium spp., and both of these strains established efficient symbioses with soybean plants.  相似文献   

15.
5-Arylamino-4,7-dioxobenzo[b]thiophenes 3-6 were synthesized and tested for in vitro antifungal activity against Candida and Aspergillus species. 5-Arylamino-6-chloro-2-(methoxycarbonyl)-4,7-dioxobenzo[b]thiophenes 5 showed, in general, more potent antifungal activity against Candida species than the other 4,7-dioxobenzo[b]thiophenes 3, 4 and 6. The results suggest that 5-arylamino-4,7-dioxobenzo[b]thiophenes would be potent antifungal agents.  相似文献   

16.
AIMS: Antagonist activity of Kluyveromyces spp. isolates on Aspergillus section Flavi was studied. METHODS AND RESULTS: The screening of isolates were made through studies of growth at different water activities and temperatures, index of dominance (I(D)), ecological similarity, antifungal activity and impact on aflatoxin B1 accumulation. High optical density was obtained at 25 and 30 degrees C and 48 h of incubation. Cell growth decreases with decrease in water activity. The predominant interaction was mutual intermingling at a(w) = 0.982 and 0.955, while at a(w) = 0.999 and 0.937 mutual inhibition for contact was exhibited. All isolates were catabolically identical to Aspergillus section Flavi and compete by nutritional source. At high water activities yeasts showed inhibitory activity on Aspergillus strains, inhibition percentages varied between 75 and 100%. The isolates Y9, Y14, Y16, Y22, Y25 and Y33 showed antifungal activity and inhibitory activity on aflatoxin B1 accumulation at all water activities assayed from all Aspergillus section Flavi strains. CONCLUSIONS: The data show that the isolates selected in a wide range of environmental conditions could exert their roll like biological control agents for Aspergillus section Flavi in storage maize ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY: Isolates of Kluyveromyces spp. may have practical value in the postharvest control of storage maize.  相似文献   

17.
To characterize Aspergillus section Nigri strains involved in the ochratoxin A (OTA) contamination of Tunisian wine and table grapes, a total of 33 strains were analysed. A molecular characterization of the isolates was performed by the amplification of internal transcribed spacer (ITS1‐5.8S rDNA‐ITS2) region combined with amplicon sequencing. Analysis of similarity between the obtained sequences and those deposited in the GenBank database was performed. Twelve strains were confirmed to belong to the Aspergillus carbonarius species. Strains belonging to the Aspergillus niger aggregate group were classified by in silico RFLP assay into two patterns N and T, corresponding to A. niger and Aspergillus tubingensis. Among the 21 OTA producing isolates analysed, 13 showed the T‐type pattern and 8 showed the N‐type pattern. The presented method showed to be a reliable alternative to the classic RFLP method. Our findings unambiguously revealed that multiple aspergilli species isolated from wine and table grape in Tunisia are able to produce OTA.  相似文献   

18.

Aims

To characterize fungal antagonistic bacilli isolated from aerial roots of banyan tree and identify the metabolites responsible for their antifungal activity.

Methods and Results

Seven gram positive, endospore‐forming, rod‐shaped endophytic bacterial strains exhibiting a broad‐spectrum antifungal activity were isolated from the surface‐sterilized aerial roots of banyan tree. The isolates designated as K1, A2, A4 and A12 were identified as Bacillus subtilis, whereas isolates A11 and A13 were identified as Bacillus amyloliquefaciens using Biolog Microbial Identification System. The antifungal lipopeptides, surfactins, iturins and fengycins with masses varying in the range from m/z 900 to m/z 1550 could be detected using intact‐cell MALDI‐TOF mass spectrometry (ICMS). On the basis of mass spectral and carbon source utilization profile, all seven endophytes could be distinguished from each other. Furthermore, ICMS analysis revealed higher extent of heterogeneity among iturins and fengycins produced by B. subtilis K1, correlating well with its higher antifungal activity in comparison with other isolates.

Conclusion

Seven fungal antagonistic bacilli were isolated from aerial roots of banyan tree, exhibiting broad spectrum of antifungal activity, among which B. subtilis K1 isolate was found to be most potent. The ICMS analysis revealed that all these isolates produced cyclic lipopeptides belonging to surfactin, iturin and fengycin families and exhibited varying degree of heterogeneity.

Significance and Impact of the study

The endophytes are considered as a potential source of novel bioactive metabolites, and this study describes the potent fungal antagonistic bacilli from aerial roots of banyan tree. The isolates described in this study have a prospective application as biocontrol agents. Also ICMS analysis described in this study for characterization of antifungal metabolites produced by banyan endophytic bacilli may be used as a high throughput tool for screening of microbes producing novel cyclic lipopeptides.  相似文献   

19.
Thirteen Lactic acid bacteria strains isolated from fermenting cocoa and seven reference strains were used in order to assess their antifungal properties towards three ochratoxin A (OTA) producing fungi (Aspergillus carbonarius, Aspergillus niger and Aspergillus ochraceus). Furthermore, two of the isolates strains (A19 and A21) identified as belonging to the genus of Pediococcus as well as Lactobacillus plantarum B4496, Lactobacillus brevis 207 and Lactobacillus sanfranciscensis BB12 showed interesting in vitro broad antifungal activities towards the three ochratoxin-producing fungi with inhibition percentages ranging from 15% to 66.7%. Treatment of cell-free supernatant at 100°C affected antifungal activity suggesting that the main compounds responsible for this activity were of proteic nature, and hence could be bacteriocins. Application of isolate A19 in cocoa fermentation as starter inhibited the growth of each of the OTA-producing species. At the end of fermentation in boxes inoculated with A19, A. niger was not detectable while A. carbonarius concentration was found to be 2 Log CFU/g of wet beans. The assessment of the ochratoxin produced during fermentation of cocoa inoculated with A. carbonarius indicated that the use of isolate A19 as starter could reduce their level of growth so as to have only a toxin production of 0.0012 ± 0.0005 μg/kg after 40 days of storage, while this was 2.45 ± 0.35 μg/kg of fermented and dried cocoa beans in the absence of A19. This work is a contribution for the application of biological control of OTA-producing fungi during cocoa production.  相似文献   

20.
A new coelomycete, Morinia longiappendiculata sp. nov., isolated from living stems of four plant species in central Spain, is described. The distinctive morphological characteristics of this fungus are the production of conidia with long basal and apical appendages on filiform conidiogenous cells that contrasts with the short-appendaged conidia and cylindrical conidiogenic cells of the type species, M. pestalozzioides. Comparative sequence analysis of the ITS rDNA region and fragments of the translation elongation factor 1alpha, actin and chitin synthase 1 genes and the study of the HPLC profiles of the M. longiappendiculata and M. pestalozzioides isolates supported the recognition of the new species. Comparison of the ITS rDNA sequences of the Morinia isolates with GenBank sequences indicated that the genus belongs to the Amphisphaeriaceae with the highest similarity to Bartalinia and Truncatella. Bresadola's original definition of M. pestalozzioides is updated by adding information on conidiogenesis and molecular data. A lectotype and epitype are designated for the species. A study of bioactive metabolites revealed that M. pestalozzioides cultures produced moriniafungin, a novel sordarin analog with potent antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号