首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group I introns in rRNA genes are clustered in highly conserved regions that include tRNA and mRNA binding sites. This pattern is consistent with insertion of group I introns by direct interaction with exposed regions of rRNA. Integration of the Tetrahymena group I intron (or intervening sequence, IVS) into large subunit rRNA via reverse splicing was investigated using E. coli 23S rRNA as a model substrate. The results show that sequences homologous to the splice junction in Tetrahymena are the preferred site of integration, but that many other sequences in the 23S rRNA provide secondary targets. Like the original splice junction, many new reaction sites are in regions of stable secondary structure. Reaction at the natural splice junction is observed in 50S subunits and to a lesser extent in 70S ribosomes. These results support the feasibility of intron transposition to new sites in rRNA genes via reverse splicing.  相似文献   

2.
Protein introns are recently discovered genetic elements whose intervening sequences are removed from a precursor protein by an unusual protein splicing reaction. This involves the excision of a central spacer molecule, the protein intron, and the religation of the amino- and carboxy-terminal fragments of the precursor. The recA gene of Mycobacterium tuberculosis contains one such element and we now show that the other major mycobacterial pathogen, Mycobacterium leprae, also possesses a protein intron in its recA, although other mycobacterial recA genes do not. However, these two protein introns are different in size, sequence and location of insertion of their coding sequences into the recAs of M. tuberculosis and M. leprae, indicating that acquisition of the protein introns has occurred independently in the two species, and thus suggesting that there has been selection for splicing in the maturation of RecA in the pathogenic mycobacteria. The M. leprae protein intron provides an example of conditional protein splicing, splicing occurring in M. leprae itself but not when expressed in Escherichia coli, unlike most previously described protein introns. These observations suggest that protein introns may perform a function for their host, rather than being just selfish elements.  相似文献   

3.
Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages.  相似文献   

4.
Functions of the Borrelia burgdorferi RecA protein were investigated in Escherichia coli recA null mutants. Complementation with B. burgdorferi recA increased survival of E. coli recA mutants by 3 orders of magnitude at a UV dose of 2,000 microJ/cm(2). The viability at this UV dose was about 10% that provided by the homologous recA gene. Expression of B. burgdorferi recA resulted in survival of E. coli at levels of mitomycin C that were lethal to noncomplemented hosts. B. burgdorferi RecA was as effective as E. coli RecA in mediating homologous recombination in E. coli. Furthermore, E. coli lambda phage lysogens complemented with B. burgdorferi recA produced phage even in the absence of UV irradiation. The level of phage induction was 55-fold higher than the level in cells complemented with the homologous recA gene, suggesting that B. burgdorferi RecA may possess an enhanced coprotease activity. This study indicates that B. burgdorferi RecA mediates the same functions in E. coli as the homologous E. coli protein mediates. However, the rapid loss of viability and the absence of induction in recA expression after UV irradiation in B. burgdorferi suggest that recA is not involved in the repair of UV-induced damage in B. burgdorferi. The primary role of RecA in B. burgdorferi is likely to be a role in some aspect of recombination.  相似文献   

5.
The recA gene has been isolated from Rickettsia prowazekii, an obligate intracellular bacterium. Comparison of the amino acid sequence of R. prowazekii RecA with that of Escherichia coli RecA revealed that 62% of the residues were identical. The highest identity was found with RecA of Legionella pneumophila, in which 69% of the residues were identical. Amino acid residues of E. coli RecA associated with functional activities are conserved in rickettsial RecA, and the R. prowazekii recA gene complements E. coli recA mutants for UV light and methyl methanesulfonate sensitivities as well as recombinational deficiencies. The characterized region upstream of rickettsial recA did not contain a sequence homologous to an E. coli LexA binding site (SOS box), suggesting differences in the regulation of the R. prowazekii recA gene.  相似文献   

6.
R G Quivey  R C Faustoferri 《Gene》1992,116(1):35-42
The inactivation of the RecA protein in pathogenic oral streptococci would facilitate genetic analysis of potential virulence factors in these strains. Comparison of recA nucleotide (nt) sequences from a number of bacteria has suggested that two regions of highly conserved RecA amino acid (aa) sequence could be used as a basis for synthesizing degenerate oligodeoxyribonucleotide primers with which to amplify recA homologues from the streptococci. Accordingly, primer mixtures were used to amplify a 693-bp fragment of the Streptococcus mutans chromosome by PCR. The amplified fragment was cloned and its identity confirmed via hybridization to an Escherichia coli recA gene probe and by nt sequence determination. The recA homologue fragment from S. mutans GS-5 was 63% and 75% homologous to the deduced aa sequences of the E. coli and Bacillus subtilis RecA enzymes, respectively. The S. mutans recA fragment was mutagenized in vitro via insertional inactivation and returned to the chromosome using allelic exchange. The resulting strains of S. mutans were shown to be substantially more sensitive to UV irradiation than the wild-type strain. Further, the ability to incorporate linear markers into the chromosome was abolished in putative S. mutans recA strains, thus indicating the functional inactivation of RecA in these microorganisms.  相似文献   

7.
Reverse splicing of group I introns is proposed to be a mechanism by which intron sequences are transferred to new genes. Integration of the Tetrahymena intron into the Escherichia coli 23S rRNA via reverse splicing depends on base pairing between the guide sequence of the intron and the target site. To investigate the substrate specificity of reverse splicing, the wild-type and 18 mutant introns with different guide sequences were expressed in E. coli. Amplification of intron-rRNA junctions by RT-PCR revealed partial reverse splicing at 69 sites and complete integration at one novel site in the 23S rRNA. Reverse splicing was not observed at some potential target sites, whereas other regions of the 23S rRNA were more reactive than expected. The results indicate that the frequency of reverse splicing is modulated by the structure of the rRNA. The intron is spliced 10-fold less efficiently in E. coli from a novel integration site (U2074) in domain V of the 23S rRNA than from a site homologous to the natural splice junction of the Tetrahymena 26S rRNA, suggesting that the forward reaction is less favored at this site.  相似文献   

8.
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.  相似文献   

9.
Two recA genes in Myxococcus xanthus.   总被引:7,自引:4,他引:3       下载免费PDF全文
N Norioka  M Y Hsu  S Inouye    M Inouye 《Journal of bacteriology》1995,177(14):4179-4182
Two recA genes, recA1 and recA2, in Myxococcus xanthus were cloned by using the recA gene of Escherichia coli, and their DNA sequences were determined. On the basis of deduced amino acid sequences, RecA1 and RecA2 have 67.0% identity to each other and 60.5 and 60.9% identities to E. coli RecA, respectively. Expression of recA2 was detected in both vegetative and developmental cells by Northern blot (RNA) analysis, and a threefold induction was observed when cells were treated with nalidixic acid. Repeated attempts to isolate a recA2 disruption mutant have failed, while a recA1 disruption mutant was readily isolated. Both the recA1 and recA2 genes expressed in E. coli complement the UV sensitivity of an E. coli recA strain.  相似文献   

10.
The M. tuberculosis recA locus comprises an 85 kd open reading frame but produced 38 kd RecA and 47 kd products in E. coli. No RNA processing was detected; rather, an 85 kd precursor protein was spliced, releasing a 47 kd spacer protein, and joining its terminal fragments to form mature RecA protein. "Spacer" protein was also produced in M. tuberculosis and from a hybrid spacer-LacZ alpha fusion molecule. Mutagenesis at codon wobble positions at one splice junction showed that protein rather than nucleotide sequence determined splicing activity. Other mutants defined additional regions needed for splicing and allowed processing to be followed. Splicing was essential for RecA activity in E. coli. The possibility that splicing is a manifestation of a novel class of genetic element is discussed.  相似文献   

11.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

12.
13.
Of 62 Streptococcus thermophilus bacteriophages isolated from various ecological settings, half contain a lysin gene interrupted by a group IA2 intron. Phage mRNA splicing was demonstrated. Five phages possess a variant form of the intron resulting from three distinct deletion events located in the intron-harbored open reading frame (orf 253). The predicted orf 253 gene sequence showed a significantly lower GC content than the surrounding intron and lysin gene sequences, and the predicted protein shared a motif with endonucleases found in phages from both gram-positive and gram-negative bacteria. A comparison of the phage lysin genes revealed a clear division between intron-containing and intron-free alleles, leading to the establishment of a 14-bp consensus sequence associated with intron possession. The conserved intron was not found elsewhere in the phage or S. thermophilus bacterial genomes. Folding of the intron RNA revealed secondary structure elements shared with other phage introns: first, a 38-bp insertion between regions P3 and P4 that can be folded into two stem-loop structures (shared with introns from Bacillus phage SPO1 and relatives); second, a conserved P7.2 region (shared with all phage introns); third, the location of the stop codon from orf 253 in the P8 stem (shared with coliphage T4 and Bacillus phage SPO1 introns); fourth, orf 253, which has sequence similarity with the H-N-H motif of putative endonuclease genes found in introns from Lactococcus, Lactobacillus, and Bacillus phages.  相似文献   

14.
The Neurospora CYT-18 protein, a tyrosyl-tRNA synthetase, which functions in splicing group I introns in mitochondria, promotes splicing of mutants of the distantly related bacteriophage T4 td intron. In an in vivo assay, wild-type CYT-18 protein expressed in E. coli suppressed mutations in the td intron's catalytic core. CYT-18-suppressible mutations were also suppressed by high Mg2+ or spermidine in vitro, suggesting they affect intron structure. Both the N- and C-terminal domains of CYT-18 are required for efficient splicing, but CYT-18 with a large C-terminal truncation retains some activity. Our results indicate that CYT-18 interacts with conserved structural features of group I introns, and they provide direct evidence that a protein promotes splicing by stabilizing the catalytically active structure of the intron RNA.  相似文献   

15.
After unsuccessful attempts to recover a viable RecA-deficient mutant of the Lyme borreliosis agent Borrelia burgdorferi, we characterized the functional activities of RecA of B. burgdorferi, as well as RecA of the relapsing fever spirochete Borrelia hermsii and the free-living spirochete Leptospira biflexa, in a recA mutant of Escherichia coli. As a control, E. coli RecA was expressed from the same plasmid vector. DNA damage repair activity was assessed after exposure of the transgenic cells to UV light or the radiomimetic chemicals methyl methanesulfonate and mitomycin C. Recombination activity in the cells was assessed by using an assay for homologous recombination between repeats in the chromosome and by measuring the ability of the cells to foster lytic growth by red gam mutant bacteriophage lambda. Overall, we found that transgenic cells with recA genes of B. burgdorferi, B. hermsii, and L. biflexa had approximately equivalent activities in promoting homologous recombination in the lacZ duplication assay, but cells with B. burgdorferi recA and, most notably, B. hermsii recA were significantly less capable than cells with L. biflexa recA or E. coli recA in responding to DNA damage or in facilitating plaque formation in the phage assay. The comparatively poor function of Borrelia recA in the latter set of assays may be the consequence of impaired coordination in the loading of the transgenic RecA by RecBCD and/or RecFOR in E. coli.  相似文献   

16.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

17.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

18.
Mycoplasmas are wall-less prokaryotes phylogenetically related to gram-positive bacteria. In order to investigate DNA recombination in these organisms, we have cloned the recA gene from the mycoplasma Acholeplasma laidlawii. DNA sequence data indicate extensive homology between the A. laidlawii recA gene and recA genes from other bacteria, particularly Bacillus subtilis. The recA sequences from three A. laidlawii strains (strains JA1, K2, and 8195) were compared, and surprisingly, the gene from A. laidlawii 8195 was found to contain a nonsense mutation that results in truncation of 36 amino acids from the carboxyl terminus of the RecA protein. By using sensitivity to UV irradiation as a measure of DNA repair, strain 8195 had an apparent RecA- phenotype. When carried on a multicopy plasmid, the wild-type A. laidlawii recA gene was detrimental to growth of Escherichia coli, perhaps because of improper regulation of the RecA protein.  相似文献   

19.
20.
The deduced amino acid sequence of Gluconobacter oxydans RecA protein shows 75.2, 69.4, and 66.2% homology with those from Aquaspirillum magnetotacticum, Escherichia coli, and Pseudomonas aeruginosa, respectively. The amino acid residues essential for function of the recombinase, protease, and ATPase in E. coli recA protein are conserved in G. oxydans. Of 24 amino acid residues believed to be the ATP binding domain of E. coli RecA, 17 are found to be identical in G. oxydans RecA. Interestingly, nucleotide sequence alignment between the SOS box of G. orphans recA gene and those from different microorganisms revealed that all the DNA sequences examined have dyad symmetry that can form a stem-loop structure. A G. oxydans recA-deficient mutant (LCC96) was created by allelic exchange using the cloned recA gene that had been insertionally inactivated by a kanamycin-resistance cassette. Such replacement of the wild-type recA with a kanamycin resistance gene in the chromosome was further verified by Southern hybridization. Phenotypically, the recA-deficient mutant is significantly more sensitive to UV irradiation than the wild-type strain, suggesting that the recA gene of G. oxydans ATCC9324 plays a role in repairing DNA damage caused by UV irradiation. Moreover, the mutant strain is much more plasmid transformable than its parent strain, illustrating that G. oxydans LCC96 could be used as a host to take up the recombinant plasmid for gene manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号