首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amphipathic alpha helix is an often-encountered secondary structural motif in biologically active peptides and proteins. An amphipathic helix is defined as an alpha helix with opposing polar and nonpolar faces oriented along the long axis of the helix. In a recent review article we grouped amphipathic helixes into seven distinct classes (A, H, L, G, K, C, and M) based upon a detailed analysis of their physical-chemical and structural properties (Segrest, J. P., et al. Amphipathic helix motif: classes and properties. Proteins. 1990. 8: 103-117). We have developed five computer programs that automate analysis and classification of potential amphipathic helical domains from primary amino acid sequence data. Here we describe these five programs and illustrate their usefulness by comparing two data sets of sequences representing different amphipathic alpha helical motifs from the exchangeable apolipoproteins. In a companion review article (Segrest, J. P., et al. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 1992. 33: 000-000) these five programs are used to localize and characterize the putative amphipathic helixes in the exchangeable apolipoproteins.  相似文献   

2.
Multiple amphipathic alpha-helical candidate domains have been identified in exchangeable apolipoproteins by sequence analysis and indirect experimental evidence. The distribution of charged residues can differ within and between these apolipoproteins. Segrest et al. (Segrest, J. P., H. DeLoof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah. 1990. Proteins. 8:103-117.) argued that these differences are correlated with lipid affinity. A mathematically defined motif for the particular charge distribution associated with high lipid affinity (class A) is proposed. Primary sequence data from protein segments proposed previously to have an amphipathic alpha-helical structure are scanned. Counting formulas are presented for determining the conditional probability that the match between an observed charge distribution and the proposed motif would occur by chance. Because the preselected helical segments are short (the modal length is 22) and the motif definition imposes multiple constraints on the acceptable distributions, the computer-based algorithm is quite feasible computationally. 19 of the 20 segments previously assigned to class A match the motif sufficiently well (the remaining one is borderline), while very few others "erroneously" pass the screening test. These results confirm the original assignments of the candidate domains and, thus, support the hypothesis that there is a distinguishable subset of helixes having high lipid affinity. This counting approach is applicable to a growing subset of protein sequence analysis problems in which the segment lengths are short and the motif is complex.  相似文献   

3.
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.  相似文献   

4.
Exchangeable apolipoproteins function in lipid transport as structural components of lipoprotein particles, cofactors for enzymes and ligands for cell-surface receptors. Recent findings with apoA-I and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related. Characteristically, these proteins contain a series of proline-punctuated, 11- or 22-amino acid, amphipathic alpha-helical repeats that can adopt a helix bundle conformation in the lipid-free state. The amino- and carboxyl-terminal regions form separate domains with the latter being primarily responsible for lipid binding. Interaction with lipid induces changes in the conformation of the amino-terminal domain leading to alterations in function; for example, opening of the amino-terminal four-helix bundle in apolipoprotein E upon lipid binding is associated with enhanced receptor-binding activity. The concept of a two-domain structure for the larger exchangeable apolipoproteins is providing new molecular insights into how these apolipoproteins interact with lipids and other proteins, such as receptors. The ways in which structural changes induced by lipid interaction modulate the functionality of these apolipoproteins are reviewed.  相似文献   

5.
Apolipoprotein (apo) E is an exchangeable apolipoprotein that plays an integral role in cholesterol transport in the plasma and the brain. It is also associated with protein misfolding or amyloid proteopathy of the beta amyloid peptide (Abeta) in Alzheimer's disease (AD) and cerebral amyloid angiopathy. The C-terminal domain (CT) of apoE encompasses two types of amphipathic alpha helices: a class A helix (residues 216-266) and a class G* helix (residues 273-299). This domain also harbors high-affinity lipoprotein binding and apoE self-association sites that possibly overlap. The objective of this study is to examine if the neurotoxic oligomeric Abeta interacts with apoE CT and if this association affects the lipoprotein binding function of recombinant human apoE CT. Site-specific fluorescence labeling of single cysteine-containing apoE CT variants with donor probes were employed to identify the binding of Abeta bearing an acceptor probe by intermolecular fluorescence resonance energy-transfer analysis. A higher efficiency of energy transfer was noted with probes located in the class A helix than with those located in the class G* helix of apoE CT. In addition, incubation of apoE CT with Abeta severely impaired the lipid binding ability and the overall amount of lipid-associated apoE CT. However, when apoE CT is present in a lipid-bound state, Abeta appears to be localized within the lipid milieu of the lipoprotein particle and not associated with any specific segments of the protein. When our data are taken together, they suggest that Abeta association compromises the fundamental lipoprotein binding function of apoE, which may have implications not only in terms of amyloid buildup but also in terms of the accumulation of cholesterol at extracellular sites.  相似文献   

6.
Apolipoprotein A-IV (apoA-IV) is an exchangeable apolipoprotein that shares many functional similarities with related apolipoproteins such as apoE and apoA-I but has also been implicated as a circulating satiety factor. However, despite the fact that it contains many predicted amphipathic alpha-helical domains, relatively little is known about its tertiary structure. We hypothesized that apoA-IV exhibits a characteristic functional domain organization that has been proposed to define apoE and apoA-I. To test this, we created truncation mutants in a bacterial system that deleted amino acids from either the N- or C-terminal ends of human apoA-IV. We found that apoA-IV was less stable than apoA-I but was more highly organized in terms of its cooperativity of unfolding. Deletion of the extreme N and C termini of apoA-IV did not significantly affect the cooperativity of unfolding, but deletions past amino acid 333 on the C terminus or amino acid 61 on the N terminus had major destabilizing effects. Functionally, apoA-IV was less efficient than apoA-I at clearing multilamellar phospholipid liposomes and promoting ATP-binding cassette transporter A1-mediated cholesterol efflux. However, deletion of a C-terminal region of apoA-IV, which is devoid of predicted amphipathic alpha helices (amino acids 333-376) stimulated both of these activities dramatically. We conclude that the amphipathic alpha helices in apoA-IV form a single, large domain that may be similar to the N-terminal helical bundle domains of apoA-I and apoE but that apoA-IV lacks the C-terminal lipid-binding and cholesterol efflux-promoting domain present in these apolipoproteins. In fact, the C terminus of apoA-IV appears to reduce the ability of apoA-IV to interact with lipids and promote cholesterol efflux. This indicates that, although apoA-IV may have evolved from gene duplication events of ancestral apolipoproteins and shares the basic amphipathic helical building blocks, the overall localization of functional domains within the sequence is quite different from apoA-I and apoE.  相似文献   

7.
Apolipoprotein specificity for lipid efflux by the human ABCAI transporter   总被引:15,自引:0,他引:15  
ABCAI, a member of the ATP binding cassette family, mediates the efflux of excess cellular lipid to HDL and is defective in Tangier disease. The apolipoprotein acceptor specificity for lipid efflux by ABCAI was examined in stably transfected Hela cells, expressing a human ABCAI-GFP fusion protein. ApoA-I and all of the other exchangeable apolipoproteins tested (apoA-II, apoA-IV, apoC-I, apoC-II, apoC-III, apoE) showed greater than a threefold increase in cholesterol and phospholipid efflux from ABCAI-GFP transfected cells compared to control cells. Expression of ABCAI in Hela cells also resulted in a marked increase in specific binding of both apoA-I (Kd = 0.60 microg/mL) and apoA-II (Kd = 0.58 microg/mL) to a common binding site. In summary, ABCAI-mediated cellular binding of apolipoproteins and lipid efflux is not specific for only apoA-I but can also occur with other apolipoproteins that contain multiple amphipathic helical domains.  相似文献   

8.
In this paper analyses are made of the thermodynamic and geometric properties of the predicted association between amphipathic helixes and phospholipid vesicles. From thermodynamic considerations it is proposed that a major driving force for such an association is the negative free energy gained by the transfer of a number of hydrophobic residues (contained within the non-polar faces of amphipathic helixes), from water to the interior of a phospholipid bilayer. The mechanism proposed is that in the aqueous state a potentially amphipathic sequence forms a non-helical hydrophobic patch on the surface of the apolipoprotein. Formation of an amphipathic helix and simultaneous burial of the hydrophobic residues in the surface of a phospholipid bilayer provides the driving force for lipid association. From this model an estimate of the upperlimit for the hydrophobically driven free energy of lipid association (?40?65 kcal/mol) is calculated for the 4 apolipoproteins with known sequences.On the basis of geometrical considerations a model for an intermediate state of high density lipoprotein (HDL) synthesis is proposed. This model consists of a cholesterol-containing phospholipid bilayer disc whose ‘naked’ hydrophobic edges are shielded from the aqueous phase by amphipathic helixes of the apolipoproteins. Exposure of these ‘bicycle tire’ micelles to the enzyme lecithin: cholesterol acyl transferase (LCAT) is postulated to result in the formation of mature spherical HDL particles with cholesteryl ester forming a neutral lipid core.  相似文献   

9.
In a recent classification of biologically active amphipathic α-helixes, the lipid-associating domains in exchangeable plasma apolipoproteins have been classified as class A amphipathic helixes (Segrest, J. P., De Loof, H., Dohlman, J. G., Brouillette, C. G., Anantharamaiah, G. M. Proteins 8:103–117, 1990). A model peptide analog with the sequence, Asp Trp Leu Lys Ala Phe Tyr Asp Lys Val Ala Glu Lys Leu Lys Glu Ala Phe (18A), possesses the characteristics of a class A amphipathic helix. The addition of an acetyl group at the α-amino terminus and an amide at the α-carboxyl terminus, to obtain Ac-18A-NH2, produces large increases in helicity for the peptide both in solution and when associated with lipid (for 18A vs Ac-18A-NH2, from 6 to 38% helix in buffer and from 49 to 92% helix when bound to dimyristoyl phosphatidylcholine in discoidal complexes). Blocking of the end-groups of 18A stabilizes the α-helix in the presence of lipid by approximately 1.3 kcal/mol. There is also an increase in the self-association of the blocked peptide in aqueous solution. The free energy of binding to the PC–water interface is increased only by about 3% (from ?8.0 kcal/mol for 18A to ?8.3 kcal/mol for Ac-18A-NH2). The Ac-18A-NH2 has a much greater potency in raising the bilayer to hexagonal phase transition temperature of dipalmitoleoyl phosphatidylethanolamine than does 18A. In this regard Ac-18A-NH2 more closely resembles the behavior of the apolipoprotein A-I, which is the major protein component of high-density lipoprotein and a potent inhibitor of lipid hexagonal phase formation. The activation of the plasma enzyme lecithin: cholesterol acyltransferase by the Ac-18A-NH2 peptide is greater than the 18A analog and comparable to that observed with the apo A-I. In the case of Ac-18A-NH2, the higher activating potency may be due, at least in part, to the ability of the peptide to micellize egg PC vesicles. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The formation of amyloid and other protein deposits in vivo is synonymous with many pathological conditions such as Alzheimer's disease, Creutzfeldt-Jakob disease and Parkinson's disease. Interestingly, many plasma apolipoproteins are also associated with amyloid deposits, including apolipoprotein (apo) A-I, apoA-II and apoE. Apolipoproteins share a number of structural and conformational properties, namely a large proportion of class A amphipathic alpha-helices and limited conformational stability in the absence of lipid. Other proteins that form amyloid such as alpha-synuclein and serum amyloid A also contain amphipathic alpha-helical domains similar to those found in apolipoproteins. In this review we develop a hypothesis to account for the widespread occurrence of apolipoproteins in amyloid deposits. We describe the conformational stability of human apoC-II and the stabilization of alpha-helical structure in the presence of phospholipid. We propose that lipid-free apoC-II forms partially folded intermediates prone to amyloid formation. Parameters that affect apolipoprotein lipid binding in vivo, such as protein and lipid oxidation or protein truncations and mutations, could promote apolipoprotein-related pathologies including those associated within amyloid deposits of atherosclerotic plaques.  相似文献   

11.
PURPOSE OF REVIEW: Recent publications related to the potential use of synthetic peptides for the management of lipid disorders and their vascular complications are reviewed. RECENT FINDINGS: The potential use of synthetic peptides for the management of lipid disorders and their vascular complications has emerged in recent years. These peptides are models of apolipoproteins, but are much smaller in size than the apolipoproteins. Oral peptides that improve the antiinflammatory properties of HDLs have been shown to potently inhibit atherosclerosis in mouse models. Injection of a peptide with a class A amphipathic helix in a rat model of diabetes dramatically reduced endothelial sloughing and improved vasoreactivity. Injected synthetic peptides have also been described that dramatically lower plasma cholesterol and restore endothelial function in a rabbit model of familial hypercholesterolemia. These studies suggest the therapeutic potential for synthetic peptides in the management of lipid disorders and their vascular complications. SUMMARY: Synthetic peptides much smaller than exchangeable human plasma apolipoproteins but with physical and chemical characteristics similar to the plasma apolipoproteins have shown promise in the management of lipid disorders and their vascular complications in animal models. The initial success of these animal studies suggests that synthetic peptides have the potential to emerge as a new therapeutic class of agents in the management of patients with lipid disorders.  相似文献   

12.
The amphipathic helix hypothesis for the lipid-associating domains of exchangeable plasma apolipoproteins has been further studied by analysis of the structure of the complexes formed between four synthetic peptide analogs of the amphipathic helix and dimyristoyl phosphatidylcholine (DMPC). Density gradient ultracentrifugation, negative stain electron microscopy, nondenaturing gradient gel electrophoresis, 1H NMR, high sensitivity differential scanning calorimetry, and circular dichroism were the techniques used in these studies. The two analogs Asp-Trp-Leu-Lys-Ala-Phe-Tyr-Asp-Lys-Val-Ala-Glu-Lys-Leu-Lys-Glu-Ala-Phe (18A) and 18A-Pro-18A whose sequences most strongly mimic native amphipathic sequences were found also most strongly to mimic apolipoprotein A-I in DMPC complex structure. The covalently linked dimer of the prototype amphipathic analog 18A, 18A-Pro-18A, appears to have greater lipid affinity than 18A. This presumably is the result of the cooperativity provided by two covalently linked lipid-associating domains in 18A-Pro-18A. The studies further suggest that the charge-reversed analog of the prototype 18A, reverse-18A, has the lowest lipid affinity of the four analogs studied and forms only marginally stable discoidal DMPC complexes. We postulate that this low lipid affinity is due predominantly, but not necessarily exclusively, to the lack of a hydrophobic contribution of lysine residues at the polar-nonpolar interface of reverse-18A versus 18A. The intermediate lipid affinity of des-Val10-18A, the fourth analog peptide, to produce a rank order of 18A-Pro-18A greater than 18A greater than des-Val10-18A greater than reverse-18A, supports this interpretation. Des-Val10-18A which has Val deleted from 18A has an amphipathic helical structure partially disrupted by the shift of 2 lysine residues away from the polar-nonpolar interface.  相似文献   

13.
A molecular model for the lipid-associating domains of the A and C plasma apolipoproteins was recently proposed. This model consists of helical regions with special properties termed amphipathic. In the present communication we present a computer analysis of the general occurrence of amphipathic helix patterns in proteins with known amino acid sequences.  相似文献   

14.
Human apolipoprotein E (apoE) mediates high affinity binding to the low density lipoprotein receptor when present on a lipidated complex. In the absence of lipid, however, apoE does not bind the receptor. Whereas the x-ray structure of lipid-free apoE3 N-terminal (NT) domain is known, the structural organization of its lipid-associated, receptor-active conformation is poorly understood. To study the organization of apoE amphipathic alpha-helices in a lipid-associated state, single tryptophan-containing apoE3 variants were employed in fluorescence quenching studies. The relative positions of the Trp residues with respect to the phospholipid component of apoE/lipid particles were established from the degree of quenching by phospholipids bearing nitroxide groups at various positions along their fatty acyl chains. Four apoE3-NT variants bearing Trp reporter groups at positions 141, 148, 155, or 162 within helix 4 and two apoE3 variants containing single Trp at positions 257 or 264 in the C-terminal (CT) domain, were reconstituted into phospholipid-containing discoidal complexes. Parallax analysis revealed that each engineered Trp residue in helix 4 of apoE3-NT, as well as those in the CT domain of apoE, localized approximately 5 A from the center of the bilayer. Circular dichroism studies revealed that lipid association induces additional helix formation in apoE. Protease protection assays suggest the flexible loop segment between the NT and CT domains may transition from unstructured to helix upon lipid association. Taken together, these data support a model wherein the alpha-helices in the receptor-binding region and the CT domain of apoE align perpendicular to the fatty acyl chains of the phospholipid bilayer. In this alignment, the residues of helix 4 are arrayed in a positively charged, curved helical segment for optimal receptor interaction.  相似文献   

15.
Class A amphipathic helical peptides have been shown to mimic apolipoprotein A-I, the major protein component of high density lipoproteins and have been shown to inhibit atherosclerosis in several dyslipidemic mouse models. Previously we reported the NMR structure of Ac-18A-NH2, the base-line model class A amphipathic helical peptide in a 50% (v/v) trifluoroethanol-d3/water mixture, a membrane-mimic environment (Mishra, V. K., Palgunachari, M. N., Anantharamaiah, G. M., Jones, M. K., Segrest, J. P., and Krishna, N. R. (2001) Peptides 22, 567-573). The peptide Ac-18A-NH2 forms discoidal nascent high density lipoprotein-like particles with 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Because subtle structural changes in the peptide.lipid complexes have been shown to be responsible for their antiatherogenic properties, we undertook high resolution NMR studies to deduce detailed structure of recombinant peptide.1,2-dimyristoyl-sn-glycero-3-phosphocholine complexes. The peptide adopts a well defined amphipathic alpha helical structure in association with the lipid at a 1:1 peptide:lipid weight ratio. Nuclear Overhauser effect spectroscopy revealed a number of intermolecular close contacts between the aromatic residues in the hydrophobic face of the helix and the lipid acyl chain protons. The pattern of observed peptide-lipid nuclear Overhauser effects is consistent with a parallel orientation of the amphipathic alpha helix, with respect to the plane of the lipid bilayer, on the edge of the disc (the belt model). Based on the results of chemical cross-linking and molecular modeling, we propose that peptide helices are arranged in a head to tail fashion to cover the edge of the disc. This arrangement of peptides is also consistent with the pKa values of the Lys residues determined previously. Taken together, these results provide for the first time a high resolution structural view of the peptide.lipid discoidal complexes formed by a class A amphipathic alpha helical peptide.  相似文献   

16.
Abstract

The understanding of complex interactions which occur in the serum lipoproteins has been greatly aided by using peptide synthesis to obtain fragments of the apolipoproteins which are unobtainable by other means. The results from lipid-binding studies with these synthetic materials have generally supported the amphipathic helical hypothesis of Segrest et a1.12 for the interaction of phospholipid with the apolipoprotein. However, CD results from these same experiments suggest that the amphipathic helices may not be as large as originally proposed. The contribution of other protein structural features, e.g. β-sheets and β-turns, to lipid binding has not been systematically investigated. The importance of hydrophobicity to lipid-protein interaction is strongly supported by the experimental data. Indeed, there is preliminary evidence44,60 that the hydrophobic residues positioned beneath the paired acidic and basic residues on the amphipathic helix are extremely critical to the interaction with phospholipid. The role of charged residues in binding is less clear and needs further investigation. The importance of the structural features previously mentioned can be elucidated through the synthesis of appropriately substituted peptides. However, the final proof of the protein structural features involved in protein-lipid interaction must await x-ray diffraction analysis and detailed NMR measurements.

As more peptides are synthesized and studied, the authors feel that the complexities of lipid transport and metabolism will be better understood. The surface properties of peptide fragments of the apoproteins are presently being investigated and could lead to important findings on the exchange of apoproteins between lipoprotein classes. The interactions of synthetic peptides with the enzymes which control lipid synthesis and degradation have increased the understanding of protein-protein and protein-lipid interactions which control these important processes. The ability of a synthetic peptide to accelerate lipolysis in an apoC-II deficient lipoprotein offers the potential for treating these patients with synthetic material to reduce their hypertriglyceridemia. The ability to model the amphipathic helix opens new vistas for the study of the role of hydrophobicity, peptide length, helix potential, and charged residues in lipid binding. The observation of Pownall et al.71 and Yokayama et al.74 that phospholipid-cholesterol complexes of these model peptides can serve as substrates for LCAT suggests several exciting avenues for further study of cholesterol metabolism and transport. As these studies increase knowledge of lipid transport, the potential exists to intervene therapeutically with potent synthetic lipid-binding peptides to reduce serum cholesterol or to remove cholesterol from arterial lesions.  相似文献   

17.
Effect of oxidation on the properties of apolipoproteins A-I and A-II   总被引:7,自引:0,他引:7  
Purified apolipoprotein A-I has been separated by reversed-phase high performance liquid chromatography (HPLC) into multiple peaks and these peaks have been characterized. One peak, apoA-Ib had a relatively longer retention time on HPLC but its retention time could be shortened by treatment by hydrogen peroxide. CNBr cleavage studies indicated that the differences in apoA-Ib and in its oxidation product, apoA-Ia, were due to the different oxidation states of methionine. This phenomenon was also observed in apoA-II, where methionine oxidation produced two more forms of this apolipoprotein in addition to the native form. These isomers were found to have different secondary structures and affinities for lipid. Model peptide analogs of the amphipathic helix with the same sequence but with methionine and methionine sulfoxide at the nonpolar face of the amphipathic helix were synthesized and studied. It was found that the lipid affinities of these synthetic peptide isomers were very different. They also differed in their secondary structures as studied by circular dichroism (CD). We propose that methionine oxidation introduces hydrophilic residues at the nonpolar face of the amphipathic helical domains of these apolipoproteins and, therefore, alters their secondary structure and lipid affinity.  相似文献   

18.
Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site-directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indicating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.  相似文献   

19.
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).  相似文献   

20.
Based on the 210 non-homologous proteins (domains) classified manually by Michie et al. (J. Mol. Biol. 262, 168-185, 1996), a new structure classification criterion of globular proteins relying on the content of helix/strand has been proposed, using a quadratic discriminant method. Each protein is classified into one of the three classes, i.e. those of alpha class, beta class and alphabeta class (including alpha/beta and alpha+beta classes). According to the new structure classification criterion, of the 210 proteins in the training set, 207 are correctly classified and thus the accuracy is 207/210=98.57%. Multiple cross-validation tests are performed. The jackknife test shows that of the 210 proteins 207 are correctly classified with an accuracy of 98.57%. To test the method further, of 3577 proteins (domains) extracted from SCOP, 91.39% of them are correctly reclassified by the new classification criterion. On average, the accuracy of the new criterion is about 8 percentage points higher than that of the criterion proposed by Nakashima et al. (J. Biochem. 99, 153-162, 1986). Our result shows that the classification based solely on structures is basically consistent with that combining both structural and evolutionary information. Further complete automated classification scheme should consider both structures and evolutionary relationship. The methodology presented provides an appropriate mathematical format to reach this goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号