首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanical forces play pivotal roles in regulating cell shape, function, and fate. Key players that govern the mechanobiological interplay are the mechanosensitive proteins found on cell membranes and in cytoskeleton. Their unique nanomechanics can be interrogated using single-molecule tweezers, which can apply controlled forces to the proteins and simultaneously measure the ensuing structural changes. Breakthroughs in high-resolution tweezers have enabled the routine monitoring of nanometer-scale, millisecond dynamics as a function of force. Undoubtedly, the advancement of structural biology will be further fueled by integrating static atomic-resolution structures and their dynamic changes and interactions observed with the force application techniques. In this minireview, we will introduce the general principles of single-molecule tweezers and their recent applications to the studies of force-bearing proteins, including the synaptic proteins that need to be categorized as mechanosensitive in a broad sense. We anticipate that the impact of nano-precision approaches in mechanobiology research will continue to grow in the future.  相似文献   

2.
Mutations that lead to muscular dystrophy often create deficiencies in cytoskeletal support of the muscle sarcolemma causing hyperactive mechanosensitive cation channel (MSC) activity and elevated intracellular Ca2+. Caveolae are cholesterol-rich microdomains that form mechanically deformable invaginations of the sarcolemma. Mutations to caveolin-3, the main scaffolding protein of caveolae in muscle, cause Limbe-Girdle muscular dystrophy. Using genetic and acute chemical perturbations of developing myotubes we investigated whether caveolae are functionally linked to MSCs. MSC sensitivity was assayed using suction application to patches and probe-induced indentation during whole-cell recordings. Membrane mechanical stress in patches was monitored using patch capacitance/impedance. Cholesterol depletion disrupted caveolae and caused a large increase in MSC current. It also decreased the membrane mechanical relaxation time, likely reflecting cytoskeleton dissociation from the bilayer. Reduction of Cav3 expression with miRNA also increased MSC current and decreased patch relaxation time. In contrast Cav3 overexpression produced a small decrease in MSC currents. To acutely and specifically inhibit Cav3 interactions, we made a chimeric peptide containing the antennapedia membrane translocation domain and the Cav3 scaffolding domain (A-CSD3). A-CSD3 action was time dependent initially producing a mild Ca2+ leak and increased MSC current, while longer exposures decreased MSC currents coinciding with increased patch stiffening. Images of GFP labeled Cav3 in patches showed that Cav3 doesn’t enter the pipette, showing patch composition differed from the cell surface. However, disruption via cholesterol depletion caused Cav3 to become uniformly distributed over the sarcolemma and Cav3 appearance in the patch dome. The whole-cell indentation currents elicited under the different caveolae modifying conditions mirror the patch response supporting the role of caveolae in MSC function. These studies show that normal expression levels of Cav3 are mechanoprotective to the sarcolemma through multiple mechanisms, and Cav3 upregulation observed in some dystrophies may compensate for other mechanical deficiencies.  相似文献   

3.
4.
The mechanism of mechanosensitive gating of ion channels underlies many physiological processes, including the sensations of touch, hearing, and pain perception. TREK-2 is the best-studied mechanosensitive member of the two-pore domain potassium channel family. Apart from pressure sensing, it responds to a diverse range of stimuli. Two states, termed “up” and “down,” are known from x-ray structural crystallographic studies and have been suggested to differ in conductance. However, the structural details of the gating behavior are largely unknown. In this work, we used molecular dynamics simulations to study the conductance of the states as well as the effect of mechanical membrane stretch on the channel. We find that the down state is less conductive than the up state. The introduction of membrane stretch in the simulations shifts the state of the channel toward an up configuration, independent of the starting configuration, and also increases its conductance. The correlation of the selectivity filter state and the conductance supports a model in which the selectivity filter gates by a carbonyl flip. This gate is stabilized by the pore helices. We suggest a modulation of these helices by an interface to the transmembrane helices. Membrane pressure changes the conformation of the transmembrane helices directly and consequently also influences the channel conductance.  相似文献   

5.
We outline several principles that we believe define the gating of two bacterial mechanosensitive channels, MscL and MscS. Serving as turgor regulators in bacteria and other walled cells, these molecules are tangible models for studying conformational transitions in membrane proteins driven directly by membrane tension. MscL, a compact pentamer, reversibly opens a gigantic 30-Å pore at near-lytic tensions. MscS, a heptameric complex, exhibits transient activation of a smaller pore at moderate tensions, thereby entering a tension-insensitive inactivated state. By comparing the structures and predicted transitions in these channels, we concluded that opening is commonly achieved through tilting and outward motion of the pore-lining helices, which is kinetically limited by hydration of the pore. The intricate adaptive behavior in MscS appears to depend on specific interhelical associations and the flexibility of the pore-lining helices. We discuss physical factors that may direct the transitions and stabilize main functional states in these channels.Osmotic forces are strong, which necessitated development of osmoregulation along with the first semipermeable membrane delineating the early cell. A simple estimation shows that a 1-μm cell behaving as an ideal osmometer would sustain a downshock no stronger than 20 mm, after which membrane tension would exceed the lytic limit of 10–12 dynes/cm. Thus, a cell without a reinforcing envelope or protective valves is very vulnerable. Free-living and enteric microorganisms cycling through the soil and experiencing drastic environmental changes developed robust mechanisms to maintain volume and integrity (1). The mechanosensitive channels MscS and MscL (mechanosensitive channels of small and large conductance, respectively) have been identified as primary osmolyte release valves limiting the turgor pressure under acute osmotic shock (24).Without mscS and mscL genes, Escherichia coli survives a 300 mosm osmotic downshock (2), its resistance attributed to the peptidoglycan layer partially restraining swelling. However, expression of either MscS or MscL allows cells to withstand a 700–800 mosm downshock through release of small osmolytes (2). Purification and reconstitution proved that MscL and MscS respond directly to tension in the lipid bilayer (57). Both channels reside in the inner (cytoplasmic) membrane (8), with MscL localized at the cell poles, bearing high curvature (9).As primary components of the turgor regulation system, E. coli MscS and MscL became convenient models for studies of tension-driven conformational transitions in membrane proteins (10). The crystal structures of closed-state Mycobacterium tuberculosis MscL (11) and E. coli MscS in two distinct conformations (12, 13) provided invaluable initial points to explore their gating mechanisms, in which computational methods play increasingly important roles.  相似文献   

6.
Piezo1是哺乳动物中新发现的一种机械敏感(mechanosensitive,MS)离子通道,在不同组织和器官中发挥着重要功能,包括骨骼、泌尿道、眼球和动脉等。然而,异常的Piezo1机械传导会造成多种疾病的发生并促进病程的发展。纤维化疾病几乎可以发生在任何一个组织和器官中,其主要特征是胶原蛋白和其他细胞外基质(extracellular matrix,ECM)成分的过度交联与累积,最终导致组织器官刚度增加,生理功能受到影响。目前,越来越多的研究表明,Piezo1在纤维化疾病的发生和发展中扮演着重要的调控作用,与其基质力学状态变化有着密切联系。本文叙述了Piezo1的结构和激活机理,并且系统地总结了Piezo1在心、肾、胰和肝等多种器官纤维化疾病中的研究进展,以期为纤维化疾病的治疗提供新的视角和策略。  相似文献   

7.
Corynebacterium glutamicum MscCG, also referred to as NCgl1221, exports glutamate when biotin is limited in the culture medium. MscCG is a homolog of Escherichia coli MscS, which serves as an osmotic safety valve in E. coli cells. Patch-clamp experiments using heterogeneously expressed MscCG have shown that MscCG is a mechanosensitive channel gated by membrane stretch. Although the association of glutamate secretion with the mechanosensitive gating has been suggested, the electrophysiological characteristics of MscCG have not been well established. In this study, we analyzed the mechanosensitive gating properties of MscCG by expressing it in E. coli spheroplasts. MscCG is permeable to glutamate, but is also permeable to chloride and potassium. The tension at the midpoint of activation is 6.68 ± 0.63 mN/m, which is close to that of MscS. The opening rates at saturating tensions and closing rates at zero tension were at least one order of magnitude slower than those observed for MscS. This slow kinetics produced strong opening-closing hysteresis in response to triangular pressure ramps. Whereas MscS is inactivated under sustained stimulus, MscCG does not undergo inactivation. These results suggest that the mechanosensitive gating properties of MscCG are not suitable for the response to abrupt and harmful changes, such as osmotic downshock, but are tuned to execute slower processes, such as glutamate export.  相似文献   

8.
《Cell reports》2020,30(13):4518-4527.e3
  1. Download : Download high-res image (262KB)
  2. Download : Download full-size image
  相似文献   

9.
《Journal of molecular biology》2019,431(17):3081-3090
Since life has emerged, gradients of osmolytes over the cell membrane cause pressure changes in the cell and require tight regulation to prevent cell rupture. The mechanosensitive channel of small conductance (MscS) releases solutes and water when a hypo-osmotic shock raises the pressure in the cell. It is a member of a large family of MscS-like channels found in bacteria, archaea, fungi and plants and model for mechanosensation. MscS senses the increase of tension in the membrane directly by the force from the lipids, but the molecular mechanism is still elusive. We determined the lipid interactions of MscS by resolving the structure of Escherichia coli MscS embedded in membrane discs to 2.9-Å resolution using cryo-electron microscopy. The membrane is attached only to parts of the sensor paddles of MscS, but phospholipid molecules move through grooves into remote pockets on the cytosolic side. On the periplasmic side, a lipid bound by R88 at the pore entrance is separated from the membrane by TM1 helices. The N-terminus interacts with the periplasmic membrane surface. We demonstrate that the unique membrane domain of MscS promotes deep penetration of lipid molecules and shows multimodal interaction with the membrane to fine-tune tension sensing.  相似文献   

10.
Channel-forming proteins/peptides fall into over 100 currently recognized families, most of which are restricted to prokaryotes or eukaryotes, but a few of which are ubiquitous. These proteins fall into three major currently recognized classes: (i) α-helix-type channels present in bacterial, archaeal and eukaryotic cytoplasmic and organellar membranes, (ii) β-barrel-type porins present in the outer membranes of Gram-negative bacterial cells, mitochondria and chloroplasts, and (iii) protein/peptide toxins targeted to the cytoplasmic membranes of cells other than those that synthesize the toxins. High-resolution 3-dimensional structural data are available for representative proteins/peptides of all three of these channel-forming types. Each type exhibits distinctive features that distinguish them from the other channel protein types and from carriers. Structural, functional, and evolutionary aspects of transmembrane channel-formers are discussed. Received: 10 September 1999/Revised: 11 February 2000  相似文献   

11.
Corynebacterium glutamicum MscCG, also referred to as NCgl1221, exports glutamate when biotin is limited in the culture medium. MscCG is a homolog of Escherichia coli MscS, which serves as an osmotic safety valve in E. coli cells. Patch-clamp experiments using heterogeneously expressed MscCG have shown that MscCG is a mechanosensitive channel gated by membrane stretch. Although the association of glutamate secretion with the mechanosensitive gating has been suggested, the electrophysiological characteristics of MscCG have not been well established. In this study, we analyzed the mechanosensitive gating properties of MscCG by expressing it in E. coli spheroplasts. MscCG is permeable to glutamate, but is also permeable to chloride and potassium. The tension at the midpoint of activation is 6.68 ± 0.63 mN/m, which is close to that of MscS. The opening rates at saturating tensions and closing rates at zero tension were at least one order of magnitude slower than those observed for MscS. This slow kinetics produced strong opening-closing hysteresis in response to triangular pressure ramps. Whereas MscS is inactivated under sustained stimulus, MscCG does not undergo inactivation. These results suggest that the mechanosensitive gating properties of MscCG are not suitable for the response to abrupt and harmful changes, such as osmotic downshock, but are tuned to execute slower processes, such as glutamate export.  相似文献   

12.
Multiconformation membrane proteins are mechanosensitive (MS) if their conformations displace different bilayer areas. Might MS closed-closed transitions serve as tension buffers, that is, as membrane “spandex”? While bilayer expansion is effectively instantaneous, transitions of bilayer-embedded MS proteins are stochastic (thermally activated) so spandex kinetics would be critical. Here we model generic two-state (contracted/expanded) stochastic spandexes inspired by known bacterial osmovalves (MscL, MscS) then suggest experimental approaches to test for spandex-like behaviors in these proteins. Modeling shows: 1), spandex kinetics depend on the transition state location along an area reaction coordinate; 2), increasing membrane concentration of a spandex right-shifts its midpoint (= tension-Boltzmann); 3), spandexes with midpoints below the activating tension of an osmovalve could optimize osmovalve deployment (required: large midpoint, barrier near the expanded state); 4), spandexes could damp bilayer tension excursions (required: midpoint at target tension, and for speed, barrier halfway between the contracted and expanded states; the larger the spandex Δ-area, the more precise the maintenance of target tension; higher spandex concentrations damp larger amplitude strain fluctuations). One spandex species could not excel as both first line of defense for osmovalve partners and tension damper. Possible interactions among MS closed-closed and closed-open transitions are discussed for MscS- and MscL-like proteins.  相似文献   

13.
Single-celled organisms must survive exposure to environmental extremes. Perhaps one of the most variable and potentially life-threatening changes that can occur is that of a rapid and acute decrease in external osmolarity. This easily translates into several atmospheres of additional pressure that can build up within the cell. Without a protective mechanism against such pressures, the cell will lyse. Hence, most microbes appear to possess members of one or both families of bacterial mechanosensitive channels, MscS and MscL, which can act as biological emergency release valves that allow cytoplasmic solutes to be jettisoned rapidly from the cell. While this is undoubtedly a function of these proteins, the discovery of the presence of MscS homologues in plant organelles and MscL in fungus and mycoplasma genomes may complicate this simplistic interpretation of the physiology underlying these proteins. Here we compare and contrast these two mechanosensitive channel families, discuss their potential physiological roles, and review some of the most relevant data that underlie the current models for their structure and function.  相似文献   

14.
15.
The bacterial mechanosensitive channel MscS forms a homoheptamer of subunits composed of a transmembrane (TM) domain and a large cytoplasmic (CP) domain. Recent studies suggest that a lateral expansion of the TM domain, structural change in the CP domain, and TM-CP interactions are essential to open the channel. However, it has not been examined whether the CP domain undergoes structural changes during channel opening. The aim of this study was to estimate structural changes in the CP domain during channel opening using fluorescence resonance energy transfer (FRET) spectroscopy. To monitor changes in the horizontal diameter of the CP domain, four point mutants (A132C, F178C, L246C, and R259C), all of which had channel activity, were created and labeled with Alexa488 and Alexa568 for FRET analysis. The FRET efficiency of these mutants decreased when lysophosphatidylcholine was applied to open the channel, suggesting that the CP domain swells up when the channel opens. The degree of the decease in FRET efficiency after lysophosphatidylcholine treatment was smaller in the D62N/F178C mutant, which was deficient in the TM-CP interactions, than in the F178C mutant. These findings provide the first, to our knowledge, experimental evidence that the CP domain swells up during channel opening, and the swelling is mediated by the TM-CP interactions.  相似文献   

16.
Mutations that alter the phenotypic behavior of the Escherichia coli mechanosensitive channel of small conductance (MscS) have been identified; however, most of these residues play critical roles in the transition between the closed and open states of the channel and are not directly involved in lipid interactions that transduce the tension response. In this study, we use molecular dynamic simulations to predict critical lipid interacting residues in the closed state of MscS. The physiological role of these residues was then investigated by performing osmotic downshock assays on MscS mutants where the lipid interacting residues were mutated to alanine. These experiments identified seven residues in the first and second transmembrane helices as lipid-sensing residues. The majority of these residues are hydrophobic amino acids located near the extracellular interface of the membrane. All of these residues interact strongly with the lipid bilayer in the closed state of MscS, but do not face the bilayer directly in structures associated with the open and desensitized states of the channel. Thus, the position of these residues relative to the lipid membrane appears related to the ability of the channel to sense tension in its different physiological states.  相似文献   

17.
Mechanosensitive (MS) channels allow cells to sense and respond to environmental changes. In bacteria, these channels are believed to protect against an osmotic shock. The physiological function of these channels has been characterized primarily by a standardized assay, where aliquots of batch-cultured cells are rapidly pipetted into a hypotonic medium. Under this method, it has been inferred many types of MS channels (MscS homologs in Escherichia coli) demonstrate limited effectiveness against shock, typically rescuing less than 10% of the cells when expressed at native levels. We introduce a single-cell-based assay which allows us to control how fast the osmolarity changes, over time scales ranging from a fraction of a second to several minutes. We find that the protection provided by MS channels depends strongly on the rate of osmotic change, revealing that, under a slow enough osmotic drop, MscS homologs can lead to survival rates comparable to those found in wild-type strains. Further, after the osmotic downshift, we observe multiple death phenotypes, which are inconsistent with the prevailing paradigm of how cells lyse. Both of these findings require a reevaluation of our basic understanding of the physiology of MS channels.  相似文献   

18.
机械力对鼠脑微血管内皮细胞膜电流的影响   总被引:1,自引:0,他引:1  
采用膜片钳技术以全细胞方式在鼠脑微血管内皮细胞中记录到一延迟外向电流,对K^+具有高度特异性,胞外施加20mmol/L的TEA-Cl在明显抑制该电流。实验的保持电位定在-100mV,测试电位从-100mV至+90mV,每次增加10mV,刺激波宽为2100ms。该电流具有TEA敏感,并有浓度依赖性,其IC50约为2.0mmol/L,类似延迟整流性钾电流特征(IKv)。机械力作用下可引出一外向电流,膜  相似文献   

19.
Mechanosensing in plants is thought to be governed by sensory complexes containing a Ca2+-permeable, mechanosensitive channel. The plasma membrane protein MCA1 and its paralog MCA2 from Arabidopsis thaliana are involved in mechanical stress-induced Ca2+ influx and are thus considered as candidates for such channels or their regulators. Both MCA1 and MCA2 were functionally expressed in Sf9 cells using a baculovirus system in order to elucidate their molecular natures. Because of the abundance of protein in these cells, MCA2 was chosen for purification. Purified MCA2 in a detergent-solubilized state formed a tetramer, which was confirmed by chemical cross-linking. Single-particle analysis of cryo-electron microscope images was performed to depict the overall shape of the purified protein. The three-dimensional structure of MCA2 was reconstructed at a resolution of 26 Å from 5,500 particles and appears to comprise a small transmembrane region and large cytoplasmic region.  相似文献   

20.
The function of the NCgl1221-encoded protein of Corynebacterium glutamicum was analyzed using Bacillus subtilis as host because a method for preparing the giant provacuole required for electrophysiological studies has been established. Expression of NCgl1221 in a strain deficient in mscL and ykuT, both of which encode mechanosensitive channels, resulted in an 8.9-fold higher cell survival rate upon osmotic downshock than the control. Electrophysiological investigation showed that the giant provacuole prepared from this strain, expressing NCgl1221, exhibited significantly higher pressure-dependent conductance than the control. These findings show that the NCgl1221-encoded protein functions as a mechanosensitive channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号