首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Germ line mutations in BRCA1 and BRCA2 account for a large proportion of inherited breast and ovarian cancer. Both genes are involved in DNA repair by homologous recombination and are thought to play a vital role in maintaining genomic stability. A major drawback for long-term functional studies of BRCA in general and BRCA2 in particular has been a lack of representative human breast epithelial cell lines. In the present study, we have established three cell lines from two patients harboring the 999del5 germ line founder mutation in the BRCA2 gene. Primary cultures were established from cellular outgrowth of explanted tissue and subsequently transfected with a retroviral construct containing the HPV-16 E6 and E7 oncogenes. Paired cancer-derived and normal-derived cell lines were established from one patient referred to as BRCA2-999del5-2T and BRCA2-999del5-2N, respectively. In addition, one cell line was derived from cancer-associated normal tissue from another patient referred to as BRCA2-999del5-1N. All three cell lines showed characteristics of breast epithelial cells as evidenced by expression of breast epithelial specific cytokeratins. Cytogenetic analysis showed marked chromosomal instability with tetraploidy and frequent telomeric association. In conclusion, we have established three breast cpithelial cell lines from two patients carrying the BRCA2 Icelandic 999del5 founder mutation. These cell lines from the basis for further studies on carcinogenesis and malignant progression of breast cancer on a defined genetic background. Agla J. Rubner Fridriksdottir and Thorarinn Gudjonsson contributed equally to this study.  相似文献   

2.
3.
Normal and neoplastic epithelial cells produce growth factors that can affect cells from different lineages. Epithelial ovarian cancers produce M-CSF and IL-6. In the present study, production of these cytokines has been measured in the apparently normal epithelial cells from which epithelial ovarian neoplasms are thought to arise. Epithelial cells from the surface of premenopausal human ovaries were established in short-term cultures. The cells bound anti-cytokeratin antibodies and exhibited characteristic epithelial morphology by light and transmission electron microscopy. M-CSF and IL-6 were detected in supernatants from cultures of these cells, using assays specific for each factor. Cytokine levels were comparable to those in supernatants from ovarian and breast cancer cell lines. M-CSF expression could also be demonstrated by immunohistochemical analysis with specific rabbit heteroantiserum. Thus, M-CSF and IL-6 are produced constitutively by normal as well as by neoplastic ovarian epithelium.  相似文献   

4.
Ahn B  Kang D  Kim H  Wei Q 《Molecules and cells》2004,18(2):249-255
DNA repair capacity in a cell could be detected by a host-cell reactivation assay (HCR). Since relation between DNA repair and genetic susceptibility to cancer remains unclear, it is necessary to identify DNA repair defects in human cancer cells. To assess DNA repair for breast cancer susceptibility, we developed a modified HCR assay using a plasmid containing a firefly luciferase gene damaged by mitomycin C (MMC), which forms interstrand cross-link (ICL) adducts. In particular, interstrand cross-link is thought to induce strand breaks being repaired by homologous recombination. The MMC-ICLs were verified by electrophoresis. Damaged plasmids were transfected into apparently normal human lymphocytes and NER-deficient XP cell lines and the DNA repair capacity of the cells were measured by quantifying the activity of the firefly luciferase. MMC lesion was repaired as much as UV adducts in normal lymphocytes and the XPC cells. However, the XPA cells have a lower repair capacity for MMC lesion than the XPC cell, indicating that the XPA protein may be involved in initial damage recognition of MMC-ICL adducts. Since several repair pathways including NER and recombination participate in MMC-ICL removal, this host cell reactivation assay using MMC-ICLs can be used in exploring DNA repair defects in human cancer cells.  相似文献   

5.
Nucleotide excision repair (NER) is a DNA repair pathway, which eliminates various types of helix-distorting DNA damage including some forms of oxidative damage and UV-induced photoproducts. To understand why patients with NER-defective disorders develop progressive neurological abnormalities, we investigated NER capabilities in neural cells. Primary cultured neurons and astrocytes derived from rat embryonic brains were prepared in mixed-cell cultures, and fibroblasts from the same embryos were cultured for comparison. Neurons in culture were unable to proliferate, while cultured astrocytes maintained that capacity. Determination of (6-4) photoproducts in situ using antibodies against those DNA lesions was used to measure NER capabilities in individual neural cells, which were identified by staining with specific cell markers. The results demonstrate that both neurons and astrocytes have significantly lower NER capabilities than fibroblasts. That result was consistent with the finding that levels of an NER-related protein (proliferating cell nuclear antigen, PCNA) recruited at the localized UV-damage sites were lower in neurons and in astrocytes than in fibroblasts. Interestingly, the degrees of NER deterioration in those neural cells were almost equivalent to those found in NER-defective human fibroblasts (TTD2VI) that show an increased sensitivity to UV. Thus, the present study suggests that an attenuated NER capacity is not specific to post-mitotic neurons, but may be common to neural cells constituting the central nervous system regardless of their residual proliferative capacity. Although the reduced but substantial NER capability of neural cells is indispensable to preventing progressive neurological abnormalities, that low NER capability might have implications for brain ageing.  相似文献   

6.
Nucleotide excision repair (NER) acts on a variety of DNA lesions, including damage induced by many chemotherapeutic drugs. Cancer therapy with such drugs might be improved by reducing the NER capacity of tumors. It is not known, however to what extent any individual NER protein is rate-limiting for any step of the repair reaction. We studied sensitivity to UV radiation and repair of DNA damage with regard to XPA, one of the core factors in the NER incision complex. About 150,000-200,000 molecules of XPA protein are present in NER proficient human cell lines, and no XPA protein in the XP-A cell line XP12RO. Transfected XP12RO cell lines expressing 50,000 or more XPA molecules/cell showed UV resistance similar to normal cells. Suppression of XPA protein to approximately 10,000 molecules/cell in a Tet-regulatable system modestly but significantly increased sensitivity to UV irradiation. No removal of cyclobutane pyrimidine dimers was detected in the SV40 immortalized cell lines tested. Repair proficient WI38-VA fibroblasts and transfected XP-A cells expressing 150,000 molecules of XPA/cell removed (6-4) photoproducts from the genome with a half-life of 1h. Cells in which XPA protein was reduced to about 10,000 molecules/cell removed (6-4) photoproducts more slowly, with a half-life of 3h. A reduced rate of repair of (6-4) photoproducts thus results in increased cellular sensitivity towards UV irradiation. These data indicate that XPA levels must be reduced to <10% of that present in a normal cell to render XPA a limiting factor for NER and consequent cellular sensitivity. To inhibit NER, it may be more effective to interfere with XPA protein function, rather than reducing XPA protein levels.  相似文献   

7.
A prospective role of sex steroid hormones in the pathogenesis of common epithelial ovarian cancer remains equivocal. We hypothesized that oestradiol can protect ovarian cells from apoptosis by augmenting their DNA repair capacity. Two established oestrogen receptor-positive human cancer cell lines of ovarian surface epithelial origin (OVCAR-3, SKOV-3) were studied during short-term (24 h) subculture in the absence or presence of oestradiol-17β and/or the DNA-damaging chemotherapeutic agent cisplatin. Apoptosis was monitored among individual cells by in situ DNA fragmentation analysis. Basal rates of apoptosis were diminished by exposure to oestradiol (progesterone or testosterone were without effect). Oestradiol also suppressed apoptosis induced by cisplatin and enhanced the repair of a cisplatin-damaged reporter chloramphenicol-O-acetyltransferase gene transfected into ovarian cells. The ability of oestrogen-responsive ovarian cancer cells to efficiently repair DNA and thereby avoid apoptosis may be related to propensity for clonal expansion and drug resistance. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
Homologous recombination deficiency conferred by alterations in BRCA1 or BRCA2 are common in breast tumors and can drive sensitivity to platinum chemotherapy and PARP inhibitors. Alterations in nucleotide excision repair (NER) activity can also impact sensitivity to DNA damaging agents, but NER activity in breast cancer has been poorly characterized. Here, we apply a novel immunofluorescence-based cellular NER assay to screen a large panel of breast epithelial and cancer cell lines. Although the majority of breast cancer models are NER proficient, we identify an example of a breast cancer cell line with profound NER deficiency. We show that NER deficiency in this model is driven by epigenetic silencing of the ERCC4 gene, leading to lack of expression of the NER nuclease XPF, and that ERCC4 methylation is also strongly correlated with ERCC4 mRNA and XPF protein expression in primary breast tumors. Re-expression of XPF in the ERCC4-deficient breast cancer rescues NER deficiency and cisplatin sensitivity, but does not impact PARP inhibitor sensitivity. These findings demonstrate the potential to use functional assays to identify novel mechanisms of DNA repair deficiency and nominate NER deficiency as a platinum sensitivity biomarker in breast cancer.  相似文献   

9.
Breast epithelial stem cells are thought to be the primary targets in the etiology of breast cancer. Since breast cancers mostly express estrogen and progesterone receptor (ERalpha and PR), we examined the biology of these ERalpha/PR-positive cells and their relationship to stem cells in normal human breast epithelium. We employed several complementary approaches to identify putative stem cell markers, to characterise an isolated stem cell population and to relate these to cells expressing the steroid receptors ERalpha and PR. Using DNA radiolabelling in human tissue implanted into athymic nude mice, a population of label-retaining cells were shown to be enriched for the putative stem cell markers p21(CIP1) and Msi-1, the human homolog of Drosophila Musashi. Steroid receptor-positive cells were found to co-express these stem cell markers together with cytokeratin 19, another putative stem cell marker in the breast. Human breast epithelial cells with Hoechst dye-effluxing "side population" (SP) properties characteristic of mammary stem cells in mice were demonstrated to be undifferentiated "intermediate" cells by lack of expression of myoepithelial and luminal apical membrane markers. These SP cells were 6-fold enriched for ERalpha-positive cells and expressed several fold higher levels of the ERalpha, p21(CIP1) and Msi1 genes than non-SP cells. In contrast to non-SP cells, SP cells formed branching structures in matrigel which included cells of both luminal and myoepithelial lineages. The data suggest a model where scattered steroid receptor-positive cells are stem cells that self-renew through asymmetric cell division and generate patches of transit amplifying and differentiated cells.  相似文献   

10.
Deficient DNA repair capacity is associated with genetic lesions accumulation and susceptibility to carcinogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate various cellular pathways including DNA repair. Here we hypothesized that the existence of HBV products may interfere with cellular nucleotide excision repair (NER) through microRNA-mediated gene regulation. We found that NER was impaired in HepG2.2.15 cells, a stable HBV-expressing cell line, compared with its parental cell line HepG2. Altered miRNA expression profile, in particular the significant upregulation of miR-192, was observed in HepG2.2.15 cells. Additionally, ERCC3 and ERCC4, two key factors implicated in NER, were identified as targets of miR-192 and over-expressing miR-192 significantly inhibited cellular NER. These results indicated that persistent HBV infection might trigger NER impairment in part through upregulation of miR-192, which suppressed the levels of ERCC3 and ERCC4. It provides new insight into the effect of chronic HBV infection on NER and genetic instability in cancer.  相似文献   

11.
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.  相似文献   

12.
13.
14.
Pura is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Pura in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Pura, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Pura positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Pura-negative cells were less efficient in DNA damage repair. Pura-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Pura is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Pura physically associates with TFIIH. Thus, Pura has a role in NER and the repair of UVC-induced DNA damage.  相似文献   

15.
Tobacco smoking is one of the major risk factors in pathogenesis of head and neck squamous cell carcinomas (HNSCC). Many of the chemical compounds present in tobacco are well-known carcinogens which form adducts with DNA. Cells remove these adducts mainly by the nucleotide excision repair pathway (NER). NER also eliminates a broad spectrum of pyrimidine dimers (CPD) and photo-products (6-4PP) induced by UV-radiation or DNA cross-links after cisplatin anti-cancer treatment. In this study DNA damage and repair was examined in peripheral blood lymphocytes obtained from 20 HNSCC patients and 20 healthy controls as well as HTB-43 larynx and SSC-25 tongue cancer cell lines. DNA repair kinetics in the examined cells after cisplatin or UV-radiation treatment were investigated using alkaline comet assay during 240min of post-treatment incubation. MTT assay was used to analyse cell viability and the Annexin V-FITC kit specific for kinase-3 was employed to determine apoptosis after treating the cells with UV-radiation at dose range from 0.5 to 60J/m(2). NER capability was assessed in vitro with cell extracts by the use of a bacterial plasmid irradiated with UV-light as a substrate for the repair. The results show that lymphocytes from HNSCC patients and HTB-43 or SSC-25 cancer cells were more sensitive to genotoxic treatment with UV-radiation and displayed impaired DNA repair. Also evidenced was a higher rate of apoptosis induction after UV-radiation treatment of lymphocytes from the HNSCC patients and the HTB-43 cancer cells than after treatment of those from healthy donors. Finally, our results showed that there was a significant decrease in NER capacity in HTB-43 or SSC-25 cancer cells as well as in peripheral blood lymphocytes of HNSCC patients compared to controls. In conclusion, we suggest that the impaired NER pathway might be a critical factor in pathogenesis of head and neck cancer.  相似文献   

16.
Metastatic cancer in adults usually has a fatal outcome. In contrast, advanced testicular germ cell tumours are cured in over 80% of patients using cisplatin-based combination chemotherapy [1]. An understanding of why these cells are sensitive to chemotherapeutic drugs is likely to have implications for the treatment of other types of cancer. Earlier measurements indicate that testis tumour cells are hypersensitive to cisplatin and have a low capacity to remove cisplatin-induced DNA damage from the genome [2] [3]. We have investigated the nucleotide excision repair (NER) capacity of extracts from the well-defined 833K and GCT27 human testis tumour cell lines. Both had a reduced ability to carry out the incision steps of NER in comparison with extracts from known repair-proficient cells. Immunoblotting revealed that the testis tumour cells had normal amounts of most NER proteins, but low levels of the xeroderma pigmentosum group A protein (XPA) and the ERCC1-XPF endonuclease complex. Addition of XPA specifically conferred full NER capacity on the testis tumour extracts. These results show that a low XPA level in the testis tumour cell lines is sufficient to explain their poor ability to remove cisplatin adducts from DNA and might be a major reason for the high cisplatin sensitivity of testis tumours. Targeted inhibition of XPA could sensitise other types of cells and tumours to cisplatin and broaden the usefulness of this chemotherapeutic agent.  相似文献   

17.
18.
Tumor-specific expression downregulation may be indicative of a gene’s involvement in tumor suppression. For instance, SEMA3B mRNA levels are decreased in many cell lines of small-cell and non-small cell lung cancer, and SEMA3B was shown to suppress the growth of the NSCLC cell line NCI-H1299 and tumor formation in immunodeficient mice. In this work, SEMA3B expression levels were determined in epithelial tumors of different localizations. In cell lines of renal, breast, and ovarian cancer, SEMA3B mRNA levels were frequently (4/11, 36%) decreased as much as 10–250-fold according to semiquantitative RT-PCR assay. SEMA3B expression levels were also determined in primary tumor extracts of kidney, lung, breast, ovarian, and colorectal cancer. In clear cell renal cell carcinoma, SEMA3B expression was decreased 5–1000-fold in 25 of 51 extracts (49%) compared to 5/51 (10%) extracts with increased mRNA levels; the result was highly significant: P < 0.0001 by Fisher’s exact test. SEMA3B was frequently downregulated in ovarian (5/16, 31% vs. 2/16, 12%) and colorectal cancer (6/11, 54% vs. 2/11, 18%). These results suggest that SEMA3B is involved in the suppression of kidney, ovarian, and colon tumor growth.  相似文献   

19.
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.  相似文献   

20.
The present trend of increasing paternal age is accompanied by concerns for the development of complex multigene diseases (e.g., autism and schizophrenia) in progeny. Recent studies have established strong correlations between male age, increased oxidative stress, decreased sperm quality, and structural aberrations of chromatin and DNA in spermatozoa. We tested the hypothesis that increasing age would result in altered gene expression relating to oxidative stress and DNA damage/repair in germ cells. To test this hypothesis, pachytene spermatocytes and round spermatids were isolated from Brown Norway (BN) rats at 4 (young) and 18 (aged) mo of age. Microarray analysis was used to compare gene expression between the groups. The probe sets with significantly altered expression were linked to DNA damage/repair and oxidative stress in pachytene spermatocytes but not in round spermatids. Further analysis of pachytene spermatocytes demonstrated that genes involved in the base excision repair (BER) and nucleotide excision repair (NER) pathways were specifically altered. Quantitative RT-PCR confirmed that NER genes were upregulated (>1.5-fold), whereas BER genes were downregulated (>1.5-fold). At the protein level the members of the BER pathway were also altered by up to 2.3-fold; levels of NER proteins remained unchanged. Furthermore, there was an increase in 8-oxo-2'-deoxyguanosine (8-oxodG) immunoreactivity in testes from aged males and in the number of spermatozoa positive for 8-oxodG. In conclusion, aging is associated with differential regulation of DNA repair pathways with a decrease in the BER pathway leading to deficient repair of 8-oxo-dG lesions in germ cells and spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号