首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
D6 is a promoter/enhancer of the mDach1 gene that is involved in the development of the neocortex and hippocampus. It is expressed by proliferating neural stem/progenitor cells (NSPCs) of the cortex at early stages of neurogenesis. The differentiation potential of NSPCs isolated from embryonic day 12 mouse embryos, in which the expression of green fluorescent protein (GFP) is driven by the D6 promoter/enhancer, has been studied in vitro and after transplantation into the intact adult rat brain as well as into the site of a photochemical lesion. The electrophysiological properties of D6/GFP-derived cells were studied using the whole-cell patch-clamp technique, and immunohistochemical analyses were carried out. D6/GFP-derived neurospheres expressed markers of radial glia and gave rise predominantly to immature neurons and GFAP-positive cells during in vitro differentiation. One week after transplantation into the intact brain or into the site of a photochemical lesion, transplanted cells expressed only neuronal markers. D6/GFP-derived neurons were characterised by the expression of tetrodotoxin-sensitive Na+-currents and K A- and K DR currents sensitive to 4-aminopyridine. They were able to fire repetitive action potentials and responded to the application of GABA. Our results indicate that after transplantation into the site of a photochemical lesion, D6/GFP-derived NSPCs survive and differentiate into neurons, and their membrane properties are comparable to those transplanted into the non-injured cortex. Therefore, region-specific D6/GFP-derived NSPCs represent a promising tool for studying neurogenesis and cell replacement in a damaged cellular environment.  相似文献   

2.
NE-4C, a p53-deficient, immortalized neuroectodermal progenitor cell line, was used to investigate the role and importance of cellular interactions in neural commitment and differentiation. NE-4C cells give rise to neurons and astrocytes in the presence of all-trans retinoic acid, if they can establish intercellular contacts. Aggregation per se, however, was insufficient to induce large-scale neuron formation. In the absence of RA, the majority of the aggregated cells died. For neuron formation, therefore, concerted actions of RA and cellular interaction were needed. Electron microscopic and electrophysiological studies revealed that gap junctions were formed between the cells. Persistent blockage of communication via gap junctions with gap junction blockers, however, had no effects on neuron formation. If cell-to-cell connections were disrupted on the fourth day after induction, the rate of neuron production increased significantly. The contact interactions formed between already committed progenitor cells seemed to hinder the formation of novel neurons. The process resembled the phenomenon called "lateral inhibition" first observed in the course of neurogenesis in Drosophila. Our results indicate that NE-4C cells provide a useful model system to investigate the role of contact communication during some early steps of neurogenesis.  相似文献   

3.
《The Journal of cell biology》1993,122(5):1131-1143
Electrical signals elicited by integrin interaction with ECM components and their role in neurite outgrowth were studied in two clones (N1 and N7) isolated from 41A3 murine neuroblastoma cell line. Although the two clones similarly adhered to fibronectin (FN) and vitronectin (VN), this adhesion induced neurite outgrowth in N1 but not in N7 cells. Patch clamp recordings in whole cell configuration showed that, upon adhesion to FN or VN but not to platelet factor 4 (PF4), N1 cells undergo a marked (approximately equal to 20 mV) hyperpolarization of the resting potential (Vrest) that occurred within the first 20 min after cell contact with ECM, and persisted for approximately 1 h before reverting to the time zero values. This hyperpolarization was totally absent in N7 cells. A detailed analysis of the molecular mechanisms involved in N1 and N7 cell adhesion to ECM substrata was performed by using antibodies raised against the FN receptor and synthetic peptides variously competing with the FN or VN binding to integrin receptor (GRGDSP and GRGESP). Antibodies, as well as GRGDSP, abolished adhesion of N1 and N7 clones to FN and VN, revealing a similar implication of integrins in the adhesion of these clones to the ECM proteins. However, these anti-adhesive treatments, while ineffective on Vrest of N7 cells, abolished in N1 cells the FN- or VN-induced hyperpolarization and neurite outgrowth, that appeared therefore strictly associated and integrin-mediated phenomena. The nature of this association was deepened through a comparative analysis of the integrin profiles and the ion channels of N1 and N7 cells. The integrin immunoprecipitation profile resulted very similarly in the two clones, with only minor differences concerning the alpha V containing complexes. Both clones possessed Ca2+ and K+ delayed rectifier (KDR) channels, while only N1 cells were endowed with inward rectifier K+ (KIR) channels. The latter governed the Vrest, and, unlike KDR channels, were blocked by Ba2+ and Cs+. By moving patched cells in contact with FN-coated beads, it was shown that KIR channel activation was responsible for the FN-mediated hyperpolarization of Vrest. Treatment with Pertuxis toxin (PTX) abolished this hyperpolarization and neurite outgrowth, indicating that a G protein is interposed between integrins and KIR channels and that the activation of these channels is required for neuritogenesis. In fact, the block of KIR channels by Cs+ abolished both hyperpolarization and neurite outgrowth, provided that the cation was supplied during the first two hours after N1 cell contact with FN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs) in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV)-, calretinin (CR)-, somatostatin (SS)-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.  相似文献   

5.
Zhou J  Shi S  Shi Y  Xie H  Chen L  He Y  Guo W  Wen L  Jin Y 《Journal of cellular physiology》2011,226(8):2081-2090
While dental mesenchymal stem cells are well-studied, the origin of these cells is still unclear. Bone marrow-derived cells (BMDCs) have the potential to engraft into several tissues after injury, but whether they can become dental tissue-specific progenitor cells under normal conditions and the relationship of these cells to the tissue-resident cells are unknown. Thus, we transplanted green fluorescent protein (GFP)-labeled BMDCs into irradiated wild-type mice. We found that the engraftment of BMDCs participated in the regeneration and differentiated into periodontal specific cells after injury. Under normal conditions, there were more BMDCs engrafting into the dental mesenchymal tissue than other organs, in which the expression of stromal cell-derived factor-1 (SDF-1) was significantly higher than in other organs, and the engraftment of cells increased with time. A small fraction of GFP+ cells maintained the mesenchymal stem cell phenotype positive for CD105, CD106, and CD90, which were significantly less than the tissue-resident stem cells; meanwhile, GFP+/CD45+ cells were rare. Isolation and characterization of the dental pulp cells showed that the number of GFP+/Ki67+ cells were greater than the GFP-/Ki67+ cells. In addition, some GFP+ cells differentiated into the dental-specific cells and expressed dental-specific proteins, and can be found in the odontoblast layer after implantation of the apical bud. In conclusion, these data suggest that bone marrow progenitor cells communicate with dental tissues and become tissue-specific mesenchymal progenitor cells to maintain tissue homeostasis.  相似文献   

6.
7.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In addition to well-known N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity, recent studies suggest that non-NMDA type ionotropic glutamate receptors are also important mediators of excitotoxic neuronal death, and that their functional expression can be regulated by the cellular environment. In this study, we used cerebellar granule cells (CGCs) in culture to investigate kainate (KA)-induced excitotoxicity. Although previous reports indicated that KA induces apoptosis of CGCs in culture, no KA-induced excitotoxic cell death was observed in CGCs treated with KA when cells were maintained in high potassium media (24 mm K+). In contrast, when mature CGCs were shifted into low potassium media (3 mm K+), KA produced significant excitotoxicity. In electrophysiological studies, the KA-induced inward current density was significantly elevated in CGCs shifted into low K+ media compared with those maintained in high K+ media. Non-desensitizing aspects of KA currents observed in this study suggest that these responses were mediated by AMPA rather than KA receptors. In immunofluorescence studies, the surface expression of GluR1 subunits increased when mature CGCs were shifted into a low K+ environment. This study suggests that KA-induced excitotoxicity in mature CGCs is dependent upon the extracellular potassium concentration, which modulates functional expression and excitability of AMPA/KA receptors.  相似文献   

9.
One of the initial steps of neurogenesis in the Drosophila embryo is the delamination of a stereotype set of neural progenitor cells (neuroblasts) from the neuroectoderm. The time window of neuroblast segregation has been divided into five successive waves (S1-S5) in which subsets of neuroblasts with specific identities are formed. To test when identity specification of the various neuroblasts takes place and whether extrinsic signals are involved, we have performed heterochronic transplantation experiments. Single neuroectodermal cells from stage 10 donor embryos (after S2) were transplanted into the neuroectoderm of host embryos at stage 7 (before S1) and vice versa. The fate of these cells was uncovered by their lineages at stage 16/17. Transplanted cells adjusted their fate to the new temporal situation. Late neuroectodermal cells were able to take over the fate of early (S1/S2) neuroblasts. The early neuroectodermal cells preferentially generated late (S4/S5) neuroblasts, despite their reduced time of exposure to the neuroectoderm. Furthermore, neuroblast fates are independent from divisions of neuroectodermal progenitor cells. We conclude from these experiments that neuroblast specification occurs sequentially under the control of non-cell-autonomous and stage-specific inductive signals that act in the neuroectoderm.  相似文献   

10.
Prostaglandin E2 (PGE2) is a lipid mediator released from the phospholipid membranes that mediates important physiological functions in the nervous system via activation of four EP receptors (EP1-4). There is growing evidence for the important role of the PGE2/EP4 signaling in the nervous system. Previous studies in our lab show that the expression of the EP4 receptor is significantly higher during the neurogenesis period in the mouse. We also showed that in mouse neuroblastoma cells, the PGE2/EP4 receptor signaling pathway plays a role in regulation of intracellular calcium via a phosphoinositide 3-kinase (PI3K)-dependent mechanism. Recent research indicates that the functional importance of the EP4 receptor depends on its subcellular localization. PGE2-induced EP4 externalization to the plasma membrane of primary sensory neurons has been shown to play a role in the pain pathway. In the present study, we detected a novel PGE2–dependent subcellular trafficking of the EP4 receptor in neuroectodermal (NE-4C) stem cells and differentiated NE-4C neuronal cells. We show that PGE2 induces EP4 externalization from the Golgi apparatus to the plasma membrane in NE-4C stem cells. We also show that the EP4 receptors translocate to growth cones of differentiating NE-4C neuronal cells and that a higher level of PGE2 enhances its growth cone localization. These results demonstrate that the EP4 receptor relocation to the plasma membrane and growth cones in NE-4C cells is PGE2 dependent. Thus, the functional role of the PGE2/EP4 pathway in the developing nervous system may depend on the subcellular localization of the EP4 receptor.  相似文献   

11.
Mobilization of endothelial progenitor cells has been suggested to contribute to neo-vascularization of ischemic organs. Aim of this study was to investigate whether the combination of granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF may influence the expansion of circulating KDR+ cells in patients with acute myocardial infarction (AMI). KDR+ cells significantly increased in peripheral blood of AMI patients treated with G-CSF and GM-CSF compared to untreated patients. This KDR+ cells population was CD14+ but not CD34+ or CD133+. CD14+/KDR+ cells were also obtained in vitro by culturing mononuclear cells from healthy donors in a Rotary Cell Culture System in the presence of G-CSF + GM-CSF, but not of the individual growth factors. CD14+/KDR+ cells, obtained from patients or from in vitro culture, co-expressed hematopoietic (CD45, CD14) and endothelial markers (CD31, CD105, and VE-cadherin). CD14+/KDR+, but not CD14+/KDR- cells, stimulated the organization of human microvascular endothelial cells into capillary-like structures on Matrigel both in vitro and in vivo. The combination of G-CSF and GM-CSF induced a CD14+/KDR+ cell population with potential pro-angiogenic properties.  相似文献   

12.
Green fluorescent protein (GFP) expression was evaluated in tissues of different transgenic rodents--Sprague-Dawley (SD) rat strain [SD-Tg(GFP)Bal], W rat strain [Wistar-TgN(CAG-GFP)184ys], and M mouse strain [Tg(GFPU)5Nagy/J]--by direct fluorescence of native GFP expression and by immunohistochemistry. The constitutively expressing GFP transgenic strains showed tissue-specific differences in GFP expression, and GFP immunohistochemistry amplified the fluorescent signal. The fluorescence of stem/progenitor cells cultured as neurospheres from the ependymal region of the adult spinal cord from the GFP SD and W rat strains was assessed in vitro. After transplantation of the cells into wild-type spinal cord, the ability to track the grafted cells was evaluated in vivo. Cultured stem/progenitor cells from the SD strain required GFP immunostaining to be visualized. Likewise, after transplantation of SD cells into the spinal cord, immunohistochemical amplification of the GFP signal was required for detection. In contrast, GFP expression of stem/progenitor cells generated from the W strain was readily detected by direct fluorescence both in vitro and in vivo without the need for immunohistochemical amplification. The cultured stem/progenitor cells transplanted into the spinal cord survived for at least 49 days after transplantation, and continued to express GFP, demonstrating stable expression of the GFP transgene in vivo.  相似文献   

13.
烟草根皮层原生质体质膜钾通道的特性研究   总被引:5,自引:0,他引:5  
采用膜片钳技术对烟草根皮层原生质体质膜上的钾通道进行全细胞记录,从而深入研究烟草K^+的吸收机制和调控机理。结果表明,内向钾通道在膜电压低于-40mV时,可以被K^+激活。内向电流可以被钾通道的专一抑制剂TEA^+抑制。动力学分析表明内向钾电流产生的K^+表观解离常数(Km)≈15.2mmol/L,类似于低亲和性钾通道。该通道具有依赖于胞外K^+浓度的特性,对胞外NH4^+、Ca^2+、Mg^2+浓度变化反应敏感,内向K^+电流可被不同程度地抑制。  相似文献   

14.
Pluripotency and their neural crest origin make dental pulp stem cells (DPSCs) an attractive donor source for neuronal cell replacement. Despite recent encouraging results in this field, little is known about the integration of transplanted DPSC derived neuronal pecursors into the central nervous system. To address this issue, neuronally predifferentiated DPSCs, labeled with a vital cell dye Vybrant DiD were introduced into postnatal rat brain. DPSCs were transplanted into the cerebrospinal fluid of 3-day-old male Wistar rats. Cortical lesion was induced by touching a cold (−60 °C) metal stamp to the calvaria over the forelimb motor cortex. Four weeks later cell localization was detected by fluorescent microscopy and neuronal cell markers were studied by immunohistochemistry. To investigate electrophysiological properties of engrafted, fluorescently labeled DPSCs, 300 μm-thick horizontal brain slices were prepared and the presence of voltage-dependent sodium and potassium channels were recorded by patch clamping.Predifferentiated donor DPSCs injected into the cerebrospinal fluid of newborn rats migrated as single cells into a variety of brain regions. Most of the cells were localized in the normal neural progenitor zones of the brain, the subventricular zone (SVZ), subgranular zone (SGZ) and subcallosal zone (SCZ). Immunohistochemical analysis revealed that transplanted DPSCs expressed the early neuronal marker N-tubulin, the neuronal specific intermediate filament protein NF-M, the postmitotic neuronal marker NeuN, and glial GFAP. Moreover, the cells displayed TTX sensitive voltage dependent (VD) sodium currents (INa) and TEA sensitive delayed rectifier potassium currents (KDR). Four weeks after injury, fluorescently labeled cells were detected in the lesioned cortex. Neurospecific marker expression was increased in DPSCs found in the area of the cortical lesions compared to that in fluorescent cells of uninjured brain. TTX sensitive VD sodium currents and TEA sensitive KDR significantly increased in labeled cells of the cortically injured area. In conclusion, our data demonstrate that engrafted DPSC-derived cells integrate into the host brain and show neuronal properties not only by expressing neuron-specific markers but also by exhibiting voltage dependent sodium and potassium channels. This proof of concept study reveals that predifferentiated hDPSCs may serve as useful sources of neuro- and gliogenesis in vivo, especially when the brain is injured.  相似文献   

15.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   

16.
The properties of the tail current associated with the delayed rectifier K+ current (IK) in isolated rat pulmonary artery smooth muscle cells were examined using the whole cell patch clamp technique. The tail currents observed upon repolarization to -60 mV after brief (e.g., 20 ms) or small (i.e. to potentials negative of 0 mV) depolarizations were outwardly directed, as expected given the calculated K+ reversal potential of -83 mV. The tail currents seen upon repolarization after longer (e.g., 500 ms) and larger (e.g., to +60 mV) depolarizations tended to be inwardly directed. Depolarizations of intermediate strength and/or duration were followed by biphasic tail currents, which were inwardly directed immediately upon repolarization, but changed direction and became outwardly directed before deactivation was complete. When cells were depolarized to +60 mV for 500 ms both IK and the subsequent inward tail current at -60 mV were similarly blocked by phencyclidine. Both IK and the inward tail current were also blocked by 4-aminopyridine. Application of progressively more depolarized 30 s preconditioning potentials inactivated IK, and reduced the inward tail current amplitude with a similar potential dependency. These results indicated that the inward tail current was mediated by IK. The reversal potential of the tail current became progressively more positive with longer depolarizations to +60 mV, shifting from -76.1 +/- 2.2 mV (n = 10) after a 20-ms step to -57.7 +/- 3.5 mV (n = 9) after a 500-ms step. Similar effects occurred when extracellular K+ and Na+ were replaced by choline. When extracellular K+ was raised to 50 mM, the tail current was always inwardly directed at -60 mV, but showed little change in amplitude as the duration of depolarization was increased. These observations are best explained if the dependencies of tail current direction and kinetics upon the duration of the preceding depolarization result from an accumulation of K+ at the external face of the membrane, possibly in membrane invaginations. A mathematical model which simulates the reversal potential shift and the biphasic kinetics of the tail current on this basis is presented.  相似文献   

17.
The signals that direct pluripotent stem cell differentiation into lineage‐specific cells remain largely unknown. Here, we investigated the roles of BMP on vascular progenitor development from human embryonic stem cells (hESCs). In a serum‐free condition, hESCs sequentially differentiated into CD34+CD31?, CD34+CD31+, and then CD34?CD31+ cells during vascular cell development. CD34+CD31+ cells contained vascular progenitor population that gives rise to endothelial cells and smooth muscle cells. BMP4 promoted hESC differentiation into CD34+CD31+ cells at an early stage. In contrast, TGFβ suppressed BMP4‐induced CD34+CD31+ cell development, and promoted CD34+CD31? cells that failed to give rise to either endothelial or smooth muscle cells. The BMP‐Smad inhibitor, dorsomorphin, inhibited phosphorylation of Smad1/5/8, and blocked hESC differentiation to CD34+CD31+ progenitor cells, suggesting that BMP Smad‐dependent signaling is critical for CD34+CD31+ vascular progenitor development. Our findings provide new insight into how pluripotent hESCs differentiate into vascular cells. J. Cell. Biochem. 109: 363–374, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Bone marrow stromal cells (BMSCs) are a rich source of osteogenic progenitor cells. A fundamental question is whether systemically transplanted BMSCs participate in bone regeneration. Luciferase and GFP double-labeled BMSCs were transplanted into irradiated mice. Five weeks after transplantation, artificial bone wounds were created in the mandibles and calvaria of the recipients. Animals were sacrificed at weeks 2, 4, and 6 after surgery and the expressions of luciferase and GFP were determined using Xenogen IVIS Imaging System, immunohistochemical staining and RT-PCR. The results demonstrated that transplanted BMSCs can be detected in wound sites as early as 2 weeks and lasted the whole experimental period. Luciferase expression peaked at 2 weeks after surgery and decreased thereafter, exhibiting a similar expression pattern as that of BSP, while GFP expression was relatively stable during the experimental period. In conclusion, BMSCs can migrate to bone wound sites and participate in bone regeneration in orocraniofacial region.  相似文献   

19.
20.
Gap junctional coupling between progenitor cells of regenerating retina in the adult newt was examined by a slice-patch technique. Retinal slices at the early regeneration stage comprised one to two layers of cells with mitotic activity, progenitor cells. These cells were initially voltage-clamped at a holding potential of -80 mV, near their resting potentials, and stepped to either hyperpolarizing or depolarizing test potentials under suppression of voltage-gated membrane currents. About half the cells showed passively flowing currents that reversed polarity around their resting potentials. The currents often exhibited a voltage- and time-dependent decline. As the difference between the test potential and resting potential increased, the time until the current decreased to the steady-state level became shorter and the amount of steady-state current decreased. Thus, the overall current profile was almost symmetrical about the current at the resting potential. Input resistance estimated from the initial peak of the currents was significantly smaller than that expected in isolated progenitor cells. In a high-K(+) solution, which decreased the resting potential to around 0 mV, the symmetrical current profile was also obtained, but only when the membrane potential was held at 0 mV before the voltage steps. These observations suggest that the current was driven and modulated by the junctional potential difference between the clamping cell and its neighbors. In addition, we examined effects of uncoupling agents on the currents. A gap junction channel blocker, halothane, suppressed the currents almost completely, indicating that the currents are predominantly gap junctional currents. Furthermore, injection of biocytin into the current-recorded cells revealed tracer coupling. These results demonstrate that progenitor cells of regenerating retina couple with each other via gap junctions, and suggest the presence of their cytoplasmic communication during early retinal regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号