首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inheritance of partial resistance to Rhynchosporium secalis, which appears to be race non-specific, was studied in a diverse range of European spring barley cultivars. Data from the F2 generation of a 6 × 6 diallel cross and the F3 generation of three crosses selected from this diallel set suggested that resistance was complex in inheritance, the results being incompatible with any hypothesis involving less than four genes. The F2 studies indicated that both dominant and recessive genes were active in conferring resistance, and that there were significant additive gene effects. Transgressive segregation occurred in all cross combinations in the F3 material. Consequently the alleles conferring resistance were not completely concentrated in the most resistant cultivar studied (cv. Proctor). Heritability estimates obtained from F2 and F3 material suggested that field selection was of limited reliability, even when spreader drills were incorporated amongst the segregates. Single-plant selection (in F2) was considered to be of little value, and the results of Fa head-row tests would require confirmation by replicated tests in subsequent generations.  相似文献   

2.
Seed coat color inheritance in Brassica napus was studied in F1, F2, F3 and backcross progenies from crosses of five black seeded varieties/lines to three pure breeding yellow seeded lines. Maternal inheritance was observed for seed coat color in B. napus, but a pollen effect was also found when yellow seeded lines were used as the female parent. Seed coat color segregated from black to dark brown, light brown, dark yellow, light yellow, and yellow. Seed coat color was found to be controlled by three genes, the first two genes were responsible for black/brown seed coat color and the third gene was responsible for dark/light yellow seed coat color in B. napus. All three seed coat color alleles were dominant over yellow color alleles at all three loci. Sequence related amplified polymorphism (SRAP) was used for the development of molecular markers co-segregating with the seed coat color genes. A SRAP marker (SA12BG18388) tightly linked to one of the black/brown seed coat color genes was identified in the F2 and backcross populations. This marker was found to be anchored on linkage group A9/N9 of the A-genome of B. napus. This SRAP marker was converted into sequence-characterized amplification region (SCAR) markers using chromosome-walking technology. A second SRAP marker (SA7BG29245), very close to another black/brown seed coat color gene, was identified from a high density genetic map developed in our laboratory using primer walking from an anchoring marker. The marker was located on linkage group C3/N13 of the C-genome of B. napus. This marker also co-segregated with the black/brown seed coat color gene in B. rapa. Based on the sequence information of the flanking sequences, 24 single nucleotide polymorphisms (SNPs) were identified between the yellow seeded and black/brown seeded lines. SNP detection and genotyping clearly differentiated the black/brown seeded plants from dark/light/yellow-seeded plants and also differentiated between homozygous (Y2Y2) and heterozygous (Y2y2) black/brown seeded plants. A total of 768 SRAP primer pair combinations were screened in dark/light yellow seed coat color plants and a close marker (DC1GA27197) linked to the dark/light yellow seed coat color gene was developed. These three markers linked to the three different yellow seed coat color genes in B. napus can be used to screen for yellow seeded lines in canola/rapeseed breeding programs.  相似文献   

3.
Seven strains of Soybean mosaic virus (SMV) and three independent resistance loci (Rsv1, Rsv3, and Rsv4) have been identified in soybean. The objective of this research was to pyramid Rsv1, Rsv3, and Rsv4 for SMV resistance using molecular markers. J05 carrying Rsv1 and Rsv3 and V94-5152 carrying Rsv4 were used as the donor parents for gene pyramiding. A series of F2:3, F3:4, and F4:5 lines derived from J05 × V94-5152 were developed for selecting individuals carrying all three genes. Eight PCR-based markers linked to the three SMV resistance genes were used for marker-assisted selection. Two SSR markers (Sat_154 and Satt510) and one gene-specific marker (Rsv1-f/r) were used for selecting plants containing Rsv1; Satt560 and Satt063 for Rsv3; and Satt266, AI856415, and AI856415-g for Rsv4. Five F4:5 lines were homozygous for all eight marker alleles and presumably carry all three SMV resistance genes that would potentially provide multiple and durable resistance to SMV.  相似文献   

4.
PK23-2, a line of six-rowed barley (Hordeum vulgare L.) originating from Pakistan, has resistance to Japanese strains I and III of the barley yellow mosaic virus (BaYMV). To identify the source of resistance in this line, reciprocal crosses were made between the susceptible cultivar Daisen-gold and PK23-2. Genetic analyses in the F1 generation, F2 generation, and a doubled haploid population (DH45) derived from the F1 revealed that PK23-2 harbors one dominant and one recessive resistance genes. A linkage map was constructed using 61 lines of DH45 and 127 DNA markers; this map covered 1268.8 cM in 10 linkage groups. One QTL having a LOD score of 4.07 and explaining 26.8% of the phenotypic variance explained (PVE) for resistance to BaYMV was detected at DNA marker ABG070 on chromosome 3H. Another QTL having a LOD score of 3.53 and PVE of 27.2% was located at marker Bmag0490 on chromosome 4H. The resistance gene on chromosome 3H, here named Rym17, showed dominant inheritance, whereas the gene on chromosome 4H, here named rym18, showed recessive inheritance in F1 populations derived from crosses between several resistant lines of DH45 and Daisen-gold. The BaYMV recessive resistance genes rym1, rym3, and rym5, found in Japanese barley germplasm, were not allelic to rym18. These results revealed that PK23-2 harbors two previously unidentified resistance genes, Rym17 on 3H and rym18 on 4H; Rym17 is the first dominant BaYMV resistance gene to be identified in primary gene pool. These new genes, particularly dominant Rym17, represent a potentially valuable genetic resource against BaYMV disease.  相似文献   

5.
Six hundred and one lines from the John Innes Pisum germplasm collection were surveyed for resistance to downy mildew (Peronospora pisi). Potential sources of resistance were identified in forty-seven lines. Using the inoculation methods described resistant varieties/lines showed no evidence of infection. Isolates from recent outbreaks in the United Kingdom when screened against a representative test array of resistant and susceptible lines showed no evidence for a race structure in Peronospora pisi, although differences were found in overall virulence. The inheritance of resistance was studied in F2 and F3 families. Under the test conditions adopted the results obtained suggest that resistance may either be determined by a single dominant gene or by two recessive genes, but the lack of concordance between F2 and F3 segregation patterns was a disturbing feature despite careful control of experimental conditions. This, coupled with difficulties in obtaining large F3 families presents considerable problems in interpretation. It is proposed that inbred lines of JI 411 Cobri and JI 399 Cennia be adopted as standards.  相似文献   

6.
Inheritance of barley nuclear genes responsible for various morphological marker traits was studied in hybrid populations F2 and Fa. Nine marker genes showed deviation from Mendelian monogenic inheritance depending on the cross direction and maternal cytoplasm. Segregation biases to both recessive mutant and dominant normal phenotypes were observed. Mechanisms of the segregation bias related to cytoplasm substitution in iso- and alloplasmic lines are discussed.  相似文献   

7.
Inheritance of pollen colour was studied in sunflower (Helianthus annuus L.) using three distinct pollen colour morphs: orange, yellow and white‐cream. Orange is the most common colour of sunflower pollen, while the yellow morph is less frequent. These two types were observed in the inbred lines F11 and EF2L, respectively. White‐cream pollen is a rare phenotype in nature, and was identified in a mutant, named white‐cream pollen, recovered in the R2 generation of an in vitro regenerated plant. The F11 inbred line was used as starting material for in vitro regeneration. The carotenoid content of these three pollen morphs differed, and was extremely reduced in white‐cream pollen. The phenotype of F1 populations obtained by reciprocal crosses revealed that the orange trait was dominant over both white‐cream and yellow. Segregation of F2 populations of both crosses, orange × yellow and orange × white‐cream, approached a 3:1 ratio, indicating the possibility of simple genetic control. By contrast, a complementation cross between the two lines with white‐cream and yellow pollen produced F1 plants with orange pollen. The F2 populations of this cross‐segregated as nine orange: four white‐cream: four yellow. A model conforming to the involvement of two unlinked genes, here designated Y and O, can explain these results. Accessions with yellow pollen would have the genotype YYoo, the white‐cream pollen mutant would have yyOO and the accession with orange pollen would have YYOO. Within F2 populations of the cross white‐cream × yellow a new genotype, yyoo, with white‐cream pollen was scored. The results of the cross yyoo × YYoo produced only F1 plants with yellow pollen, supporting a recessive epistatic model of inheritance between two loci. In this model, yy is epistatic on O and o. In F2 populations, the distributions of phenotypic classes suggested that the genetic control of carotenoid content is governed by major genes, with large effects segregating in a background of polygenic variation. These three pollen morphs can provide insight into the sequence in which genes act, as well into the biochemical pathway controlling carotenoid biosynthesis in anthers and the transfer of these different pigments into pollenkitt.  相似文献   

8.
The inheritance of hypersensitive resistance to Leptosphaeria maculans in a cross between B. oleracea var. alboglabra and B. insularis was studied. Analyses of F1 and F2 progeny suggested that resistance is determined by two dominant, independently-segregating genes. F1 hybrids were semifertile but normal levels of fertility were restored in a proportion of the F2 progeny.  相似文献   

9.
The A1 cytoplasmic–nuclear male sterility system in sorghum is used almost exclusively for the production of commercial hybrid seed and thus, the dominant genes that restore male fertility in F1 hybrids are of critical importance to commercial seed production. The genetics of fertility restoration in sorghum can appear complex, being controlled by at least two major genes with additional modifiers and additional gene–environment interaction. To elucidate the molecular processes controlling fertility restoration and to develop a marker screening system for this important trait, two sorghum recombinant inbred line populations were created by crossing a restorer and a non-restoring inbred line, with fertility phenotypes evaluated in hybrid combination with three unique cytoplasmic male sterile lines. In both populations, a single major gene segregated for restoration which was localized to chromosome SBI-02 at approximately 0.5 cM from microsatellite marker, Xtxp304. In the two populations we observed that approximately 85 and 87% of the phenotypic variation in seed set was associated with the major Rf gene on SBI-02. Some evidence for modifier genes was also observed since a continuum of partial restored fertility was exhibited by lines in both RIL populations. With the prior report (Klein et al. in Theor Appl Genet 111:994–1012, 2005) of the cloning of the major fertility restoration gene Rf1 in sorghum, the major fertility restorer locus identified in this study was designated Rf2. A fine-mapping population was used to resolve the Rf2 locus to a 236,219-bp region of chromosome SBI-02, which spanned ~31 predicted open reading frames including a pentatricopeptide repeat (PPR) gene family member. The PPR gene displayed high homology with rice Rf1. Progress towards the development of a marker-assisted screen for fertility restoration is discussed.  相似文献   

10.
Leaf rust, caused by Puccinia triticina, is one of the most widespread diseases in common wheat (Triticum aestivum L.) globally. With the objective of identifying and mapping new genes for resistance to leaf rust, F1, F2 plants and F3 lines from a cross between resistant cultivar Bimai 16 and susceptible cultivar Thatcher were inoculated with Chinese Puccinia triticina pathotypes FHTT and PHTS in the greenhouse. In the first seedling test, Bimai 16, Thatcher, 20 F1 plants, 359 F2 plants and 298 F3 lines were inoculated with pathotype FHTT. A set of 1,255 simple sequence repeat (SSR) primer pairs were used to test the parents, and resistant and susceptible bulks. Seven polymorphic markers on chromosome 7BL were used for genotyping the F2 and F3 populations. The results indicated that Bimai 16 carried a single dominant resistance gene, temporarily designated LrBi16, closely linked to SSR markers Xcfa2257 and Xgwm344, with genetic distances of 2.8 and 2.9 cM, respectively. In the second seedling test, two dominant resistance genes were identified in Bimai 16 based on seedling reactions of 254 F2 plants inoculated with pathotype PHTS. One of the genes was LrBi16, and the other was likely to be LrZH84, which is located in chromosome 1BL. The seedling reaction pattern of plants with LrBi16 was different from that of the Thatcher lines, with Lr14a and Lr14b located on chromosome 7BL. It was concluded that LrBi16 is likely to be a new leaf rust resistance gene.  相似文献   

11.
Summary One natural population (F0 generation) of Beta maritima situated on the French Atlantic coast has been analysed. It was composed of 62% female, 30% hermaphrodite and 8% intermediate plants. The analysis of half-sib progeny (F1 generation) obtained from in situ open pollination demonstrates the cytoplasmic determination of male sterility in Beta maritima and the restoration of fertility by nuclear genes. The mitochondrial DNA (mtDNA) and the chloroplast DNA (ctDNA) of sixteen F1 plants, extracted from offspring of the three sexual phenotypes, were analysed using the restriction enzymes Sal I and Bam HI, respectively. Two cytoplasmic lines with their own peculiar genetic characteristics were distinguished using the restriction enzyme patterns of mtDNA: (i) the S cytoplasmic line was found in segregating progeny of two F0 plants; all three phenotypes were produced (that is, progeny including hermaphrodite, female and intermediate plants); (ii) the N cytoplasmic line was found in the progeny of one F0 hermaphrodite plant; this produced only hermaphrodites. Thus, segregating and non-segregating hermaphrodite F0 plants can be distinguished. The nuclear genes maintaining sterility or restoring fertility are expressed in line S. At the same time the analysis of Beta vulgaris material has been carried out at the molecular level: N cytoplasmic lines of B. vulgaris and B. maritima differed only by 3 fragments of mtDNA; but the S cytoplasmic line of B. maritima was very different from Owen's cytoplasmic male sterile line of B. vulgaris. No variation in the ctDNA pattern was detected within and between the two taxa.  相似文献   

12.
The inheritance of resistance to downy mildew disease and the defense-related enzymes β-1,3-glucanase and peroxidase was studied in crosses of pearl millet using a generation-mean analysis. The study material comprised six generations (susceptible and resistant parents, F1, F2, BC1 and BC2) in three crosses. Seedlings from these generations were inoculated with the downy mildew pathogen Sclerospora graminicola and disease incidence was recorded. Analysis of constitutive levels of β-1,3-glucanase and peroxidase in the seedlings of different generations indicated that the resistant populations showed higher enzyme activities, while lower activities of the enzymes were recorded in the susceptible populations. In the generation-mean analysis, the significance of scaling tests revealed the existence of non-allelic interactions in the inheritance of resistance to downy mildew as well as with the enzymes. Among the gene effects, both additive and dominant effects were significant. All the non-allelic interaction effects were significant in the crosses. Studies on the isozyme patterns of the enzymes substantiated the results of the disease-incidence experiments in most of the generations. The results indicated that the inheritance of downy mildew disease resistance and the expression of β-1,3-glucanase and peroxidase in pearl millet is not only under the control of additive and dominant genes but are also governed by complex non-allelic interactions. Received: 30 April 2000 / Accepted: 17 October 2000  相似文献   

13.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most damaging diseases in common wheat (Triticum aestivum L.). With the objective of identifying and tagging new genes for resistance to stripe rust, F1, F2 and F3 populations from the cross Zhou 8425B/Chinese Spring were inoculated with Chinese PST isolate CYR32 in the greenhouse. A total of 790 SSR primers were used to test the parents and resistant and susceptible bulks. The resulting seven polymorphic markers on chromosome 7BL were used for genotyping F2 and F3 populations. Results indicated that Zhou 8425B carries a single dominant resistance gene, temporarily designated YrZH84, closely linked to SSR markers Xcfa2040-7B and Xbarc32-7B with genetic distances of 1.4 and 4.8 cM, respectively. In a seedling test with 25 PST isolates, the reaction patterns of YrZH84 were different from those of lines carrying Yr2 and Yr6. It was concluded that YrZH84 is probably a new stripe rust resistance gene.  相似文献   

14.
Summary The complex structure of the multigene family at the Mla locus conferring powdery mildew resistance in barley was studied by making diallel crosses between several near-isogenic lines carrying different Mla alleles. The mode of inheritance of the Mla alleles investigated was determined to be dominant for Mla1, Mla6, Mla7 and Mla13 and semidominant for Mla3, Mla12 and Mla20. F1 plants were backcrossed to the susceptible recurrent parent in order to identify susceptible and double-resistant recombinants in the BC1F1 generation. Out of 17605 progenies tested in the BC1F1 generation, two susceptible recombinants, one between Mla1 and Mla12 and one between Mla13 and Mla20 were confirmed. The former was also verified by RFLP analysis.  相似文献   

15.
The stability and heritability of three marker genes was investigated in a population of twelve independent transgenic cereal lines (six wheat and six tritordeum). Integration patterns, inheritance of structural transgenes and inheritance of expression were analysed in the T0 and T1 generations for all 12 lines. Transmission and expression were analysed in the T2 generation for 9 lines and in the T3 generation for the six wheat lines. Inheritance of integration patterns was highly stable, and transmission of the transgenes and inheritance of their expression followed Mendelian ratios in the majority of lines. A gradual reduction in uidA expression was observed over three generations, which was not accompanied by a similar reduction in bar expression. Some unexpected phenomena associated with transgene inheritance were also observed and are discussed. Received: 9 February 1999 / Accepted: 11 February 1999  相似文献   

16.
 Sugarcane mosaic virus (SCMV) causes considerable damage to maize (Zea mays L.) in Europe. The objective of the present study was to determine the genetic basis of resistance to SCMV in European maize germplasm and to compare it with that of U.S. inbred Pa405. Three resistant European inbreds D21, D32, and FAP1360A were crossed with four susceptible inbreds F7, KW1292, D408, and D145 to produce four F2 populations and three backcrosses to the susceptible parent. Screening for SCMV resistance in parental inbreds and segregating generations was done in two field trials as well as under greenhouse conditions. RFLP markers umc85, bnl6.29, umc10, umc44, and SSR marker phi075 were used in F2 populations or F3 lines to locate the resistance gene(s) in the maize genome. Segregation in the F2 and backcross generations fitted to different gene models depending on the environmental conditions and the genotype of the susceptible parent. In the field tests, resistance in the three resistant European inbreds seems to be controlled by two to three genes. Under greenhouse conditions, susceptibility to SCMV in D32 appears to be governed by one dominant and one recessive gene. Allelism tests indicated the presence of a common dominant gene (denoted as Scm1) in all three resistant European inbreds and Pa405. Marker analyses mapped two dominant genes: Scm1 on chromosome 6S and Scm2 on chromosome 3. Received: 17 November 1997 / Accepted: 25 November 1997  相似文献   

17.
Wild-abortive (WA), Honglian (HL) and Baro-II (BT) are three important cytoplasmic male sterility (CMS) types in rice. It is essential to investigate genetic mode and allelism of fertility restorer (Rf) genes and the relationship between Rf and CMS. Fertility of the all test-cross F1 plants shows that the restorer-maintainer relationship is similar for HL-CMS and BT-CMS, while that is variance for WA-CMS and HL-CMS (or BT-CMS), respectively. Genetic analysis of Rf genes indicates that HL-or BT-CMS are controlled by single dominant Rf gene and WA-CMS is controlled by one or two pairs of dominant Rf genes, which reflects the characters of the gametophytic and sporophytic restoration CMS type. It is concluded that there are at least three Rf loci in different accessions with Rf genes for each CMS type.  相似文献   

18.

Key message

We report molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea. We have also developed PCR-based markers amenable to low-cost genotyping to identify fertility restorer lines.

Abstract

Commercial hybrids in pigeonpea are based on A4 cytoplasmic male sterility (CMS) system, and their fertility restoration is one of the key prerequisites for breeding. In this context, an effort has been made to understand the genetics and identify quantitative trait loci (QTL) associated with restoration of fertility (Rf). One F2 population was developed by crossing CMS line (ICPA 2039) with fertility restorer line (ICPL 87119). Genetic analysis has shown involvement of two dominant genes in regulation of restoration of fertility. In parallel, the genotyping-by-sequencing (GBS) approach has generated ~?33 Gb data on the F2 population. GBS data have provided 2457 single nucleotide polymorphism (SNPs) segregating across the mapping population. Based on these genotyping data, a genetic map has been developed with 306 SNPs covering a total length 981.9 cM. Further QTL analysis has provided the region flanked by S8_7664779 and S8_6474381 on CcLG08 harboured major QTL explained up to 28.5% phenotypic variation. Subsequently, sequence information within the major QTLs was compared between the maintainer and the restorer lines. From this sequence information, we have developed two PCR-based markers for identification of restorer lines from non-restorer lines and validated them on parental lines of hybrids as well as on another F2 mapping population. The results obtained in this study are expected to enhance the efficiency of selection for the identification of restorer lines in hybrid breeding and may reduce traditional time-consuming phenotyping activities.
  相似文献   

19.
 Pigeonpea, Cajanus cajan, is an important grain legume of Asia and Africa. The podfly, Melanagromyza obtusa, and the podborer, Helicoverpa armigera, are the major insect pests of this crop. An accession (JM 4147) of the wild species Cajanus scarabaeoides appears to possess resistance to these insect pests. For investigating the inheritance of resistance a cross was made between the susceptible cultivar Pant A-3 as female and the wild species. The parental lines and their F1, F2 and backcross generations were studied. For podfly, the per cent pod damage was recorded on individual plants. The results suggested that resistance to podfly is governed by the two recessive genes. In the podborer screening for antixenosis was carried out through the dual-choice arena test. The results indicated that a single dominant gene is involved in the antixenosis. Received : 11 March 1997 / Accepted : 4 April 1997  相似文献   

20.
Bacterial Blight (BB) caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in tropical Asia. Since all the Basmati varieties are highly susceptible and the disease is prevalent in the entire Basmati growing region of India, BB is a severe constraint in Basmati rice production. The present study was undertaken with the objective of combining the important Basmati quality traits with resistance to BB by a combination of phenotypic and molecular marker-assisted selection (MAS). Screening of 13 near-isogenic lines of rice against four isolates of the pathogen from Basmati growing regions identified the Xa4, xa8, xa13 and Xa21 effective against all the isolates tested. Two or more of these genes in combination imparted enhanced resistance as expressed by reduced average lesion length in comparison to individual genes. The two-gene pyramid line IRBB55 carrying xa13 and Xa21 was found equally effective as three/four gene pyramid lines. The two BB resistance genes present in IRBB55 were combined with the Basmati quality traits of Pusa Basmati-1 (PB-1), the most popular high yielding Basmati rice variety used as recurrent parent. Phenotypic selection for disease resistance, agronomic and Basmati quality characteristics and marker-assisted selection for the two resistance genes were carried out in BC1F1, BC1F2 and BC1F3 generations. Background analysis using 252 polymorphic amplified fragment length polymorphism (AFLP) markers detected 80.4 to 86.7% recurrent parent alleles in BC1F3 selections. Recombinants having enhanced resistance to BB, Basmati quality and desirable agronomic traits were identified, which can either be directly developed into commercial varieties or used as immediate donors of BB resistance in Basmati breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号