首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dictyostelium discoideum is a haploid social soil amoeba that is an established host model for several human pathogens. The research areas presently pursued include the use of D. discoideum to identify genetic host factors determining the outcome of infections and the use as screening system for identifying bacterial virulence factors. Here we report about the Legionella pneumophila directed phagosome biogenesis and the cell-to-cell spread of Mycobacterium species. Moreover, we highlight recent insights from the host-pathogen cross-talk between D. discoideum and the pathogens Salmonella typhimurium, Klebsiella pneumoniae, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cenocepacia, Vibrio cholerae and Neisseria meningitidis.  相似文献   

3.
A critical phase in the infection cycle of HIV and other retroviruses is the assembly of new infectious virus particles. This process requires complex but coordinated targeting of capsid precursor proteins, virus genomic RNA and viral glycoproteins to a common assembly site on the plasma membrane. Domains within the capsid precursor proteins define the route taken to the plasma membrane and direct the process of virus budding. However, in order for the assembled virus to be infectious, viral glycoproteins, replicative enzymes and genomic RNA must also be included. The mechanisms by which this complex of interactions occur are discussed in this chapter.  相似文献   

4.
方仁东  雷桂花  彭远义 《微生物学报》2017,57(10):1421-1433
炎症小体(Inflammasome)是细胞质中多种蛋白组装成的复合物,炎症小体的激活能活化半胱天冬酶-1(caspase-1),进而引起系列促炎细胞因子的成熟与分泌和诱导细胞焦亡。当病原体感染时,炎症小体的激活在宿主天然免疫应答中起重要作用。大量研究表明,多数情况下炎症小体对宿主起保护作用,仅少数情况下保护作用不明显或表现出有利于病原体生存的一面。在长期进化中,病原体也发展出逃避宿主炎症小体作用的策略。病原体可直接抑制炎症小体的激活或减弱炎症小体的作用。本文从病原体感染宿主中炎症小体的作用及病原体对宿主炎性症小体的逃避机制两方面对二者相互作用的最新研究进展进行综述。  相似文献   

5.
Dominant phylloplane fungi of guava (Psidium guajava L.) were screened for their antagonistic activities against the two pathogens,Colletotrichum gloeosporioides andPestalotia psidii, bothin vitro andin vivo. Culture filtrates ofAspergillus niger, Fusarium oxysporum andPenicillium citrinum caused more than 50% growth inhibition ofC. gloeosporioides. Filtrates ofCephalosporium roseo-griseum andF. oxysporum were most effective in reducing the growth ofP. psidii. Volatiles produced from the cultures ofA. niger, F. oxysporum, P. citrinum andP. oxalicum inhibited the growth ofC. gloeosporioides, whereas volatiles fromC. roseo-griseum, F. oxysporum andTrichoderma harzianum inhibited the growth ofP. psidii. The inhibitory effect of volatiles decreased with increase in incubation time. In general, the maximum effect of volatiles was noticed after 48 h incubation. Different grades of colony interactions in dual cultures were recognised between the two pathogens and the phylloplane fungi examined. Maximum inhibition ofC. gloeosporioides was caused byAureobasidium pullulans, Cladosporium cladosporioides, epicoccum purpurascens, F. oxysporum andMyrothecium roridum, whereasAspergillus terreus, C. roseo-griseum andP. oxalicum significantly reduced the growth ofP. psidii. Application of a spore suspension of each test fungus inhibited lesion development of guava leaves caused by the test pathogensin vitro. Inhibition was more pronounced when the spore concentration was increased.A. pullulans, C. cladosporioides, E. purpurascens, F. oxysporum, andT. harzianum were found to be strongly antagonistic toC. gloeosporioides. A. niger, A. terreus, C. roseo-grisem andT. harzianum were strongly antagonistic toP. psidii.  相似文献   

6.
7.
8.
Antifungal activity of ChiCW and synergistic interactions between ChiCW with fungicides were investigated. Conidial germinations of phytopathogenic fungi, Alternaria brassicicola, Botrytis elliptica, and Colletotrichum gloeoporioides, were inhibited by ChiCW but A. longipes was not. In addition, ChiCW showed synergistic effect with fungicides Switch (cyprodinil+fludioxonil) and tebuconazole to inhibit fungal conidial germinations. The level of synergism of ChiCW with tebuconazole was higher than that with Switch. The results indicate that ChiCW may exhibit a higher level of synergism with fungicides that have a primary effect upon membranes.  相似文献   

9.
We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.  相似文献   

10.
11.
12.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

13.
14.
The structural aspects of protein functions, e.g., molecular recognition such as enzyme-substrate and antibody-antigen interactions, are elucidated in terms of dehydration and atomic interactions. When a protein interacts with some target molecule, water molecules at the interacting regions of both molecules are removed, with loss of the hydration free energy, but gaining atomic interactions between atoms of the contact sites in both molecules. The free energies of association originating from the dehydration and interactions between the atoms can be computed from changes in the accessible surface areas of the atoms involved. The free energy due to interactions between atomic groups at the contact sites is estimated as the sum of those estimated from the changes in the accessible surface area of 7 atomic groups, assuming that the interactions are proportional to the change of the area. The chain enthalpies and entropies evaluated from experimental thermodynamic properties and hydration quantities at the standard temperature for 10 proteins were available to determine the proportional constants for the atomic groups. This method was applied to the evaluation of association constants for the dimerization of proteins and the formation of proteolytic enzyme-inhibitor complexes, and the computed constants were in agreement with the experimental ones. However, the method is not accurate enough to account quantitatively for the change in the thermal stability of mutants of T4 lysozyme. Nevertheless, this method provides a way to elucidate the interactions between molecules in solution.  相似文献   

15.
In this paper we report on the evaluation of several procedures that allow for the repeated use of an antigen-coated, enzyme-linked immunosorbent assay (ELISA) plate for enzyme immunoassay (EIA). We have shown that antigen-coated ELISA plates that were incubated once with an aqueous solution containing 8 M urea, 2% sodium dodecyl sulfate and 2% mercaptoethanol, after an EIA, can be reused again for EIA without loss of antigenic capacity. Thus, in this procedure, after an EIA, the ELISA plates were washed once with the above solution and then in a buffer containing 20 mM Tris-HCl, pH 7.5, 0.1% Tween 20 and 500 mM NaCl. This washing protocol was shown to remove the primary antibody, enzyme-conjugated secondary antibody and substrate without removing the antigen from the ELISA plate microwells. Thus, an antigen-coated ELISA plate previously used for an assay could be reused. We tested this repeat ELISA (R-ELISA) procedure on high antigen-binding ELISA plates coated with two different plant virus proteins, a synthetic peptide, the p25/24 gag and the gp120 proteins of the human immuno-deficiency virus, or the staphylococcus enterotoxin protein. In each case tested, the procedure allowed for the repeated use of the same antigen-coated plates for EIA of the respective antibodies. This procedure should prove to be particularly valuable for mass screening of samples tested for HIV and other disease-causing agents.  相似文献   

16.
The results of in vitro interactions between colonies of Blastomyces dermatitidis and six other zoopathogenic fungi are reported. The interactions were found to range from neutral with Histoplasma capsulatum and Candida albicans to strongly antagonistic with Microsporum gypseum, Pseudallescheria boydii, and Sporothrix schenckii, and including lysis by Cryptococcus neoformans. These observations suggest that interactions between zoopathogenic fungi may be one of the biotic factors likely to influence the occurrence of B. dermatitidis in natural systems.  相似文献   

17.
The cadherin superfamily of cell-cell adhesion molecules is now known to include proteins of the desmosome as well as of the adherens type of junction. The desmosomal cadherins consist of two families of proteins, the desmocollins and the desmogleins, both of which are represented by different isoforms which are differentially expressed in epidermis. The desmocollins are quite similar to the classic cadherins in overall structure, but with alternatively spliced variants; the desmogleins have extra cytoplasmic sequences added onto the basic cadherin structure. The cytoplasmic domains are specialized for binding to 'mediator' proteins, such as plakoglobin, which interconnect to the intermediate filament system rather than the actin filaments as do the classic cadherins.  相似文献   

18.
Imaging plays a unique role in fungal cell biology and phytopathology by allowing for the documentation of molecular structure in individual fixed and living cells. Advances in fluorescence laser techniques, including confocal and multiphoton microscopy, are opening new avenues for cellular exploration. These techniques hold tremendous potential for studies of host-pathogen interactions including the use of genetically encoded markers such as green fluorescent protein, in situ hybridization and fluorescence resonance energy transfer.  相似文献   

19.
Enolase is the eighth enzyme in the glycolytic pathway, a reaction that generates ATP from phosphoenol pyruvate in cytosolic compartments. Enolase is essential, especially for organisms devoid of the Krebs cycle that depend solely on glycolysis for energy. Interestingly, enolase appears to serve a separate function in some organisms, in that it is also exported to the cell surface via a poorly understood mechanism. In these organisms, surface enolase assists in the invasion of their host cells by binding plasminogen, an abundant plasma protease precursor. Binding is mediated by the interaction between a lysine motif of enolase with Kringle domains of plasminogen. The bound plasminogen is then cleaved by specific proteases to generate active plasmin. Plasmin is a potent serine protease that is thought to function in the degradation of the extracellular matrix surrounding the targeted host cell, thereby facilitating pathogen invasion. Recent work revealed that the malaria parasite Plasmodium also expresses surface enolase, and that this feature may be essential for completion of its life cycle. The therapeutic potential of targeting surface enolases of pathogens is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号