首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Threonine content of brain decreases in young rats fed a threonine-limiting, low protein diet containing a supplement of small neutral amino acids (serine, glycine and alanine), which are competitors of threonine transport in other systems (Tews et al., 1977). Threonine transport by brain slices was inhibited more by a complex amino acid mixture resembling plasma from rats fed the small neutral amino acid supplement than by mixtures resembling plasma from control rats or from rats fed a supplement of large neutral amino acids. Greater inhibition was seen with mixtures containing only the small neutral amino acids than with mixtures containing only large neutral amino acids. On an equimolar basis, serine and alanine were the most inhibitory; large neutrals were moderately so; and glycine and lysine were without effect. Threonine transport was also strongly inhibited by α-amino-n-butyric acid and homoserine, less so by α-aminoisobutyric acid, and not at all by GABA. The complex amino acid mixtures strongly inhibited α-aminoisobutyric acid transport by brain or liver slices but, in contrast to effects in brain, the extent of the inhibition in liver was not much affected by altering the composition of the mixture. Tryptophan accumulation by brain slices was effectively inhibited by other large neutral amino acids in physiologically occurring concentrations. Threonine, or a mixture of serine, glycine and alanine only slightly inhibited tryptophan uptake; basic amino acids were without effect and histidine stimulated tryptophan transport slightly. These results support the conclusion that a diet-induced decrease in the concentration in brain of a specific amino acid may be related to increased inhibition of its transport into brain by increases in the concentrations of transport-related, plasma amino acids.  相似文献   

2.
The etiologic relationship between disturbances in metabolism of amino acids and amines and hepatic coma was investigated by examining the effects of diets containing various mixtures of amino acids on brain amine metabolism in rats with a portacaval shunt, using a method for simultaneous analysis of amino acids and amines. Rats with a portacaval shunt were fed on four different amino acid compositions with increased amounts of various amino acids suspected to be etiologically related to hepatic coma, such as methionine, phenylalanine, tyrosine, and tryptophan. The animals were killed 4 weeks after operation. During the experimental period, these animals did not become comatose, but exhibited various behavioral abnormalities. Marked increase in the plasma and brain levels of the augmented amino acids, especially methionine and tyrosine, were observed in rats with a portacaval shunt. Brain noradrenaline, dopamine, and serotonin levels were significantly decreased when the brain tyrosine level was increased. These results indicate that in rats with a portacaval shunt the dietary levels of amino acids greatly influence the brain levels of both amino acids and transmitter amines.  相似文献   

3.
Liver dysfunction was produced in rats by surgical portocaval anastomosis (PCA), and the time-course of changes in brain tryptophan and 5-HT metabolism studied in relation to plasma changes possibly influencing brain tryptophan concentration. Brain tryptophan and 5-hydroxyindolylacetic acid (5-HIAA) levels were increased greatly and maximally on the day after PCA and remained high. 5-HT changes were less marked but had a similar time-course. Plasma total tryptophan was little changed but plasma free tryptophan was raised. The latter change showed a similar time-course to that of brain tryptophan but was not large enough to account completely for it. Sham operation was followed by significant but transient increases in plasma free tryptophan, brain tryptophan and 5-HIAA but these were much smaller than after PCA. Brain tryptophan did not correlate with plasma total tryptophan either in control or PCA rats but it correlated significantly with plasma free tryptophan in both groups. However brain levels were much higher in PCA rats than in controls with similar plasma free tryptophan levels at all times from the first day after operation. The increase of brain tryptophan in anastomosed rats not accounted for by plasma free tryptophan was explained neither by insulin changes nor by an increase of the insulin/glucagon ratio nor by changes in plasma concentrations of those amino acids which compete with tryptophan for entry into brain. The results therefore indicate an unknown influence on brain tryptophan concentration in PCA rats. As tyrosine changes in brain and plasma after PCA were very similar to those of tryptophan this influence may not be specific to tryptophan. Results suggest that under the conditions used brain tryptophan concentrations of both PCA and control rats are more influenced by changes of plasma free tryptophan concentration than by changes of plasma concentrations of competing amino acids.  相似文献   

4.
The effect of diabetes (streptozotocin, 65 mg/kg ip), dietary protein intake (15-60%), and plasma amino acid concentrations on brain large neutral amino acid levels in rats was examined. After 20 days, the plasma concentrations of methionine and the branched chain amino acids (BCAA), valine, isoleucine, and leucine were increased in diabetic rats. In brain tissue, methionine and valine levels were increased but threonine, tyrosine, and tryptophan concentrations were depressed. Increased protein consumption promoted a diabetic-like plasma amino acid pattern in normal rats while enhancing that of diabetic animals. However, with the exception of threonine, glycine, valine, and tyrosine, there was little effect on brain amino acid levels. A good association was found between the calculated brain influx rate and the actual brain concentration of threonine, methionine, tyrosine, and tryptophan in diabetic animals. There was no correlation, however, between brain influx rate and brain BCAA levels. Thus, the brain amino acid pattern in diabetes represents the combined effects of insulin insufficiency and composition of the diet ingested on plasma amino acid levels as well as metabolic adaptation within the brain itself.  相似文献   

5.
Abstract: Acute hepatic failure is associated with many biochemical abnormalities in plasma and brain. Changes that correlate well with the degree of behavioral impairment may be important factors in the development of encephalopathy. We measured the concentrations of intermediary metabolites, ammonia, and amino acids in brain and plasma and the rate of whole-brain glucose utilization in rats with an acutely devascularized liver. In all rats an estimate of the grade of encephalopathy (reflected by behavioral impairment) was made. Rats underwent portacaval shunting and hepatic artery ligation (or sham operation) and were kept normoglycemic and normothermic thereafter. We sampled blood and whole brain (by near-instantaneous freeze-blowing) 2, 4, or 6 h later. There were no alterations in levels of high-energy phosphate metabolites in the brain or in metabolites associated with the glycolytic pathway and Krebs cycle, except lactate and pyruvate. Brain glucose use was decreased similarly at all times after surgery. Levels of ammonia and many amino acids were increased in brain and plasma; brain aspartate, glutamate, and arginine levels were decreased. The increases in content of plasma ammonia and brain glutamine, proline, alanine, and aromatic amino acids and the decreases in brain aspartate and glutamate were most strongly correlated with behavioral impairment.  相似文献   

6.
1. Portacaval shunting in rats results in several metabolic alterations similar to those seen in patients with hepatic encephalopathy. The characteristic changes include: (a) diminution of cerebral function; (b) raised plasma ammonia and brain glutamine levels; (c) increased neutral amino acid transport across the blood-brain barrier; (d) altered brain and plasma amino acid levels; and (e) changes in brain neurotransmitter content. The aetiology of these abnormalities remains unknown. 2. To study the degree to which ammonia could be responsible, rats were made hyperammonaemic by administering 40 units of urease/kg body weight every 12 h and killing the rats 48 h after the first injection. 3. The changes observed in the urease-treated rats were: (a) whole-brain glucose use was significantly depressed, whereas the levels of high-energy phosphates remained unchanged; (b) the permeability of the blood-brain to barrier to two large neutral amino acids, tryptophan and leucine, was increased; (c) blood-brain barrier integrity was maintained, as indicated by the unchanged permeability-to-surface-area product for acetate; (d) plasma and brain amino acid concentrations were altered; and (e) dopamine, 5-hydroxytryptamine (serotonin) and noradrenaline levels in brain were unchanged, but 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-hydroxytryptamine, was elevated. 4. The depressed brain glucose use, increased tryptophan permeability-to-surface-area product, elevated brain tryptophan content and rise in the level of cerebral 5-HIAA were closely correlated with the observed rise in brain glutamine content. 5. These results suggest that many of the metabolic alterations seen in rats with portacaval shunts could be due to elevated ammonia levels. Furthermore, the synthesis or accumulation of glutamine may be closely linked to cerebral dysfunction in hyperammonaemia.  相似文献   

7.
Taurine, aspartic acid, glutamic acid, glycine, and GABA were administered either intragastrically or in liquid diets to mice and rats. This resulted in a great increase in the plasma concentration of the administered amino acid, with plasma levels remaining elevated for several days.The prolonged increase in plasma levels resulted in significant increases in brain levels. Under these experimental conditions, taurine, aspartic acid, and glutamic acid were increased 30–60%; glycine and GABA 100%. During these experiments, plasma levels of taurine, aspartate, and glutamate were below brain levels; those of glycine and GABA were above.The findings show that even slowly penetrating amino acid levels can be increased in brain after parenteral administration of large doses.  相似文献   

8.
In both trained and untrained rats, exercise increased the plasma concentration ratio of aromatic amino acids to branched-chain amino acids which might favour entry of the aromatic amino acids into the brain. Exercise in trained rats did not change the brain concentration of 5-hydroxytryptamine but increased that of 5-hydroxyindole acetic acid. Exercise in the untrained rat increased the concentration of brain tryptophan and that of 5-hydroxytryptamine but that of 5-hydroxyindole acetic acid was unchanged. The increased concentration of 5-hydroxytryptamine in untrained rats might be involved in central fatigue.  相似文献   

9.
PLASMA TRYPTOPHAN AND 5-HT METABOLISM IN THE CNS OF THE NEWBORN RAT   总被引:7,自引:3,他引:4  
—The relationships between plasma tryptophan and 5-HT metabolism in the CNS were studied in newborn rats and compared with adults. Both the concentration of free tryptophan in plasma and that of the amino-acid in brain were much higher immediately after birth than later on. Drugs such as salicylate and chlordiazepoxide, which increased brain tryptophan concentrations in adults by displacing the plasma amino acid bound to serum albumin, were ineffective in newborn rats: most of the amino acid being already free in their plasma. The study of 5-HT metabolism in brain stem slices revealed that the affinity of the uptake process for tryptophan was higher in newborn than in adult animals, whereas the reverse situation was observed for the enzyme complex involved in 5-HT synthesis (lower apparent Km in adults). In addition, the catabolism of newly synthesized 5-HT was more rapid in newborn than in adult tissues. Finally, the free state of tryptophan in plasma of newborn animals induced in brain both a high amino acid concentration and, in contrast to the situation observed in adults, a synthesis rate of 5-HT very near its maximal value.  相似文献   

10.
Blood plasma hypo- or hyperosmolality alters significantly the concentration of some amino acids in brain tissues of the medial septum and hippocampus of adult Sprague-Dawley rats. With some notable exceptions, brain amino acid concentrations decreased under hypoosmotic conditions and increased under hyperosmotic conditions. Osmotic changes and brain amino acid changes appear to be related to each other in an almost linear fashion. A comparison of rats and toads indicates that the patterns of changes in brain amino acid concentrations in response to a hypoosmotic plasma osmolality were almost identical for both species. Changes achievable under hyperosmotic conditions were considerably greater in toads. When rats with kindled epileptogenic foci were made hypoosmotic by water-loading, seizure thresholds decreased dramatically. Our data suggest a possible relationship between the hypoosmotically induced biochemical changes in brain tissues (especially some amino acid neurotransmitters and neurotransmitter precursors) and the hypoosmotically induced increase in seizure susceptibility.  相似文献   

11.
—Changes in plasma and brain amino acids have been observed in adult rats 1 h after intraperitoneal injections of histidine and in others maintained on high histidine diets for 8 days. In the injection studies the compounds most consistently affected were the aromatic and branched chain amino acids and methionine. Reductions in their concentrations in the brain were explained by a competition with histidine for uptake into the tissue. There was little change in plasma amino acid levels. In the animals fed the highest concentration of histidine there was a generalized increase in brain, and a reduction in plasma, amino acid concentrations. A decrease in protein synthesis is postulated to explain this effect in brain.  相似文献   

12.
The rate of leucine incorporation into brain proteins was studied in rats with experimental brain tumors produced by intracerebral transplantation of the glioma clone F98. Incorporation was measured with [14C]leucine using a controlled infusion technique for maintaining constant specific activity of [14C]leucine in plasma, followed by quantitative autoradiography and biochemical tissue analysis. After 45 min the specific activity of free [14C]leucine in plasma was 2.5-3 times higher than in brain and brain tumor, indicating that the precursor pool for protein synthesis was fueled both by exogenous (plasma-derived) and endogenous (proteolysis-derived) amino acids. Endogenous recycling of amino acids amounted to 73% of total free leucine pool in brain tumors and to 60-70% in normal brain. Taking endogenous amino acid recycling into account, leucine incorporation was 78.7 +/- 16.0 nmol/g of tissue/min in brain tumor, and 17.2 +/- 4.2 and 9.7 +/- 3.3 nmol/g/min in normal frontal cortex and striatum, respectively. Leucine incorporation within tumor tissue was markedly heterogeneous, depending on the local pattern of tumor proliferation and necrosis. Our results demonstrate that quantitative measurement of leucine incorporation into brain proteins requires estimation of recycling of amino acids derived from proteolysis and, in consequence, biochemical determination of the free amino acid precursor pool in tissue samples. With the present approach such measurements are possible and provide the quantitative basis for the evaluation of therapeutic interventions.  相似文献   

13.
Variables Influencing the Effect of a Meal on Brain Tryptophan   总被引:7,自引:5,他引:2  
Previous work from our laboratory points to plasma free tryptophan being a useful predictor of brain tryptophan concentration in many circumstances. Other work, in particular various studies on the acute effects of food intake, has emphasized the roles of plasma total tryptophan and of plasma large neutral amino acids that compete with tryptophan for transport to the brain. We have now studied associations between the above variables under different dietary conditions. Rats were allowed to feed for restricted periods during a 12-h light-12-h dark cycle. In the first study, rats were given access to a carbohydrate diet for 2 h midway through the light cycle and following an 18-h fast. The resultant rise of brain tryptophan was explicable largely by the associated fall in large neutral amino acids. In a second study, rats were adapted to a regimen whereby they were allowed access to the standard laboratory diet for 4 h during the dark cycle for 3 weeks. A postprandial decrease in brain tryptophan was associated with a fall in free tryptophan and of its ratio to competing amino acids. The brain change could be attributed neither to changes in plasma total tryptophan (which increased) nor to changes of its ratio to the competers (which remained unchanged). Results as a whole are thus consistent with changes of plasma free tryptophan and large neutral amino acid concentrations affecting brain tryptophan concentration under different dietary circumstances. It is suggested that these influences serve to maintain brain tryptophan when dietary supplies are defective.  相似文献   

14.
Abstract: Passage of amino acids across the blood-brain barrier is modified by the amino acid composition of the blood. Because blood amino acid concentrations respond to changes in protein intake, we have examined associations among diet, plasma amino acid patterns, and the rate of entry of threonine into the brain. Rats were adapted for 8 h/ day for 7–10 days to diets containing 6, 18 , or 50% casein before receiving a single, independently varied, final meal of a diet containing 0, 6, 18 , or 50% casein. After 4–7 h, they were anesthetized and infused intravenously with [14C]threonine for 5 min before plasma and brain samples were taken for determination of radioactivity and amino acid content. Plasma and brain threonine concentrations decreased as protein content increased in the diets to which the rats had been adapted. Plasma threonine concentrations increased twofold, from 1.6 to 3.0 m M , when rats adapted to 6% casein meals received a single 50% casein meal rather than a nonprotein meal; a fivefold increase, from 0.13 to 0.69 m M , occurred when rats had been previously adapted to 50% casein meals. Increasing the protein content of the final meal did not increase brain threonine concentrations. Highest and lowest rates of threonine entry into the brain occurred, respectively, in rats adapted to 6 and 50% casein meals. Changes in plasma threonine concentrations and threonine flux into brain reflected protein content of both pretreatment and final meals.  相似文献   

15.
The movement of essential substrates from plasma into cerebral structures has been studied in detail in normal alert rats as well as in rats with various metabolic abnormalities. Briefly, radioactive substrates were infused i.v. to rapidly establish and maintain a trace concentration in arterial blood. The rats were killed shortly thereafter, the brain was removed and frozen, and thin sections were cut for quantitative autoradiography. The permeability-to-surface area product (PA) was calculated from the amount of radioactivity accumulated by the brain and the integral of plasma radioactivity. Influx was calculated as the product of PA times plasma substrate concentration. This approach was used to measure the influx of glucose, neutral amino acids, basic amino acids, and ketone bodies. Studies were made of normal rats, rats with portacaval shunts (a model of hepatic encephalopathy), starved rats, diabetic rats, and normal rats infused with ammonium acetate. The results demonstrate specific changes in individual transport systems, which in most cases occurred throughout the brain, although some structures were affected more than others.  相似文献   

16.
The effects of the presence of large amounts of 5-HT and of its precursor 5-HTP in brain on cerebral utilization of glucose were studied. [U-14C]Glucose was injected to fed rats that had previously been treated with L-5-HTP, L-5-HTP and an inhibitor—N-[β-(2-chlorophenoxy)-ethyl]-cyclopropylamine hydrochloride (Lilly-51641)-of MAO, or Lilly-51641 alone. Such treatment increased the concentrations of 5-HTP and 5-HT in the brain. After treatment with 5-HTP and Lilly-51641, and to a lesser extent with Lilly-51641 alone, the concentration of glucose in plasma was increased. However, the uptake of glucose by the brain did not appear to be proportionately increased, and this suggested an impairment in this mechanism. After the administration of Lilly-51641 alone and more especially of Lilly-51641 plus 5-HTP, the concentration of glucose in the brain was increased. This increase was thought to be due to an impairment of glucose utilization, because the flux of 14C from glucose to amino acids in the brain was reduced. The concentrations of most major amino acids in the brain were not greatly affected by these treatments. GABA and alanine concentrations in the brain were modestly increased after treatment with 5-HTP alone or in combination with Lilly-51641. The present results suggest that the metabolism of glucose to amino acids in the brain is altered when the concentration of 5-HTP, or more especially that of 5-HT, in the brain is increased.  相似文献   

17.
M Nichols  R P Maickel  G K Yim 《Life sciences》1983,32(16):1819-1825
The role of brain serotonin levels in Walker 256 tumor induced anorexia was investigated. Total and free plasma tryptophan, regional brain serotonin and 5-hydroxyindoleacetic acid were determined at night, and their relationship to nocturnal anorexia assessed by linear regression analysis. No significant difference in tryptophan, serotonin, or 5-hydroxyindoleacetic acid levels was detected between pair fed and tumor bearing rats exhibiting a 20% reduction of nighttime food intake. Tumor bearing rats with a 40% reduction in food intake had higher nighttime plasma free tryptophan and regional 5-hydroxyindoleacetic acid levels than their pair fed malnourished controls. These results indicate that increased plasma free tryptophan and elevated serotonin metabolism may not be the initial dysfunction responsible for nocturnal anorexia. However, it may contribute to the decreasing nocturnal food intake in severely anorexic tumor rats.  相似文献   

18.
—An attempt was made to isolate the saturable uptake from the unidirectional influx of amino acids into tissue slices and to estimate the transport constants and maximal velocities of saturable transport. The method was applied to studies on the inhibition of phenylalanine in the saturable influx of tyrosine, tryptophan, histidine and leucine into brain cortex slices from adult and 7-day-old rats. In both age groups phenylalanine inhibited the influx of the other amino acids, and vice versa. The apparent transport constants of the other amino acids increased in the presence of phenylalanine more noticeably in the slices from 7-day-old rats than in those from adult rats, whereas the concomitant influx of phenylalanine was inhibited less in the slices from 7-day-old rats. In immature animals in vivo competition between amino acids may play a more marked role in the supply of amino acids from plasma to brain, as the transport systems in brain slices from 7-day-old rats become saturated with extracellular amino acids more readily than do the transport systems in brain slices from adult rats.  相似文献   

19.
Total withdrawal of food from young rats for 72–120 h produced an increase in brain content of free histidine which was less pronounced than the effect of prolonged dietary protein deficiency. The data suggested that the elevated brain content of histidine in both fasting and protein deficiency was due partly to increased plasma level of the amino acid but mainly to diminished plasma concentrations of the neutral amino acids known to share the same transport system across the blood-brain barrier. The results also support the idea that total starvation, and most likely, prolonged caloric restriction, like protein malnutrition, elicit increased formation of histamine in brain since the key regulatory enzyme,l-histidine carboxylyase (EC 4.1.1.22) functions at less than maximal efficiency under normal brain levels of histidine. These findings in the rat are probably relevant to the human in view of evidence that theK m of blood-brain barrier neutral amino acid transport in the latter is low and therefore similar to the situation in the rat.  相似文献   

20.
Hyperammonemia in anorectic tumor-bearing rats   总被引:1,自引:0,他引:1  
Plasma ammonia concentrations were significantly elevated by 150% in anorectic rats bearing methylcholanthrene sarcomas. Assessment of ammonia levels in blood draining these sarcomas indicated nearly a 20-fold increase as compared with venous blood in control rats, suggesting the tumor mass as the source of this increase in ammonia. Infusing increasing concentrations of ammonium salts produced anorexia and alterations in brain amino acids in normal rats that were similar to those observed in anorectic tumor-bearing rats. Therefore, these results suggest that ammonia released by tumor tissue may be an important factor in the etiology of cancer anorexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号