首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simian ralA cDNA was inserted in a ptac expression vector, and high amounts of soluble ral protein were expressed in Escherichia coli. The purified p24ral contains 1 mol of bound nucleotide/mol of protein that can be exchanged against external nucleotide. The ral protein exchanges GDP with a t 1/2 of 90 min at 37 degrees C in the presence of Mg2+, and has a low GTPase activity (0.07 min-1 at 37 degrees C). We have also studied its affinity for various guanine nucleotides and analogs. NMR measurements show that the three-dimensional environment around the nucleotide is similar in p21ras and p24ral. In addition to these studies on the wild-type ral protein, we used in vitro mutagenesis to introduce substitutions corresponding to the Val12, Val12 + Thr59, and Leu61 substitutions of p21ras. These mutant ral proteins display altered nucleotide exchange kinetics and GTPase activities, however, the effects of the substitutions are less pronounced than in the ras proteins. p24ralVal12 + Thr59 autophosphorylates on the substituted Thr, as a side reaction of the GTP hydrolysis, but the rate is much lower than those of the Thr59 mutants of p21ras. These results show that ras and ral proteins have similar structures and biochemical properties. Significant differences are found, however, in the contribution of the Mg2+ ion to GDP binding, in the rate of the GTPase reaction and in the sensitivity of these two proteins to substitutions around the phosphate-binding site, suggesting that the various "small G-proteins" of the ras family perform different functions.  相似文献   

2.
It has been shown that malignant activation of ras proto-oncogenes was mediated by point mutations which resulted in the single amino acid conversions at positions 12, 13 or 61 of the ras gene products (p21 proteins). By analyzing randomly mutated ras genes, it has been demonstrated that amino acid substitutions at residues 12, 13, 59 and 63 activated p21. Furthermore, it has been shown that residues 16, 116 and 119 in p21 played critical roles in the guanine nucleotide binding and, consequently, the ability of the protein to induce changes characteristic of cellular transformation. By using the protein conformational prediction method of Chou and Fasman, the present work predicts that these critical amino acids, except glutamic acid at position 63, are located within beta-turns. The major "hot spots" for ras activation are codons 12 and 61. The author has predicted in an earlier paper that the single amino acid conversions at positions 12 and 61 would occur at beta-turn conformation consisting of residues 10-13 and 58-61, respectively. In the present study, probabilities of beta-turn occurrence at residues 10-13 or 58-61 of the p21 proteins encoded by various ras genes are compared. The probability for the normal p21 containing glycine as residue 12 is greatest, and the cancer-associated variants show less probabilities. The single amino acid substitutions at position 61 do not cause so decreased probabilities of beta-turn potential at residues 58-61, except the replacement by histidine. Histidine at position 61 is not predicted as occurring within a beta-turn.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mutation of Pro82 into Thr, a residue situated in the second element (D80CPG83) of the consensus sequence proposed to interact with GTP/GDP in GTP-binding proteins was introduced via site-directed mutagenesis in the isolated guanine nucleotide-binding domain (G domain) of elongation factor Tu. G domainPT82 displays virtually no GTPase activity. As a major change, the apparent inhibition of the GTPase reaction is associated with the appearance of autophosphorylating activity, as in ras product p21 in the case of mutation Ala59----Thr, corresponding to 82 in elongation factor Tu. Dependence of this reaction on mono- and divalent cation concentration and on pH is essentially the same as for the GTPase of wild-type G domain. The autokinase reaction follows an apparent first order rate, suggesting an intermolecular mechanism. Analysis of amino acid and peptide composition of the 32P-labeled G domainPT82, as well as Edman degradation of the tryptic peptide containing the covalently bound 32P, shows that Thr82 is the phosphorylated residue. Taken together, these results point out that Thr82 is in close proximity to the gamma-phosphate of GTP, as in the case of Thr59 in p21. These results are in agreement with the observations derived from x-ray diffraction analysis that the tertiary structure of the GTP-binding domain of elongation factor Tu and that of p21 are similar.  相似文献   

4.
In contrast to all cellular ras oncogenes which carry a single activating mutation at codon 12, 13 or 61, all known retroviral ras oncogenes have two mutations at codons 12 and 59. To understand the role of the mutation at codon 59, we have constructed plasmids containing genes for Harvey ras: p21(Gly-12,Thr-59) and p21(Val-12,Thr-59). Escherichia coli expressed proteins and their respective phosphorylated (Pi) and non-phosphorylated (non-Pi) proteins were purified to 95% homogeneity by ion-exchange chromatography and gel filtration. GTPase, autophosphorylation and nucleotide exchange activities of the mutants were studied. When the mutants were microinjected into Xenopus oocytes, the non-phosphorylated forms of p21(Gly-12,Thr-59) and p21(Val-12,Thr-59) showed high activity. Surprisingly, their phosphorylated forms were inactive. These results suggest that threonine at position 59 endows the protein with transforming activity but that phosphorylation of the residue inhibits biological activity. A structural interpretation of the observation is presented.  相似文献   

5.
We have generated deletion mutants of the H-ras p21 protein which lack residues 58 to 63 or 64 to 68 and contain either the normal glycine or an activating mutation, arginine, at position 12. None of the deleted proteins were recognized by monoclonal antibody Y13-259, and those mutants with activating mutations showed at least a 100-fold reduction in their transforming activities compared with the activities of their nondeleted counterparts. Alterations observed in the in vitro GTPase or GTP interchange properties of the deletion mutants were not consistent with the decrease in their transforming activities. Moreover, each mutant showed normal membrane localization, which is essential for its biological activity. Recently, a newly identified protein, designated GTPase-activating protein (GAP), was found to markedly increase GTPase activity of the normal ras p21 but not of p21 mutants bearing activating lesions (H. Adari, D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick, Science 240:518-521, 1988). We showed that GAP had no effect on the in vitro GTPase activity of the deletion mutants of the normal p21 protein. Since similar deletions in mutants with activating lesions at position 12 or 59 or both showed decreased transforming activity, our results suggest that the recognition site for Y13-259 within the ras p21 molecule influences directly or indirectly the interaction of ras p21 with GAP and that this interaction is critical for biological activity of ras proteins.  相似文献   

6.
Hydrolysis of GTP by the alpha-chain of Gs and other GTP binding proteins   总被引:4,自引:0,他引:4  
The functions of G proteins--like those of bacterial elongation factor (EF) Tu and the 21 kDa ras proteins (p21ras)--depend upon their abilities to bind and hydrolyze GTP and to assume different conformations in GTP- and GDP-bound states. Similarities in function and amino acid sequence indicate that EF-Tu, p21ras, and G protein alpha-chains evolved from a primordial GTP-binding protein. Proteins in all three families appear to share common mechanisms for GTP-dependent conformational change and hydrolysis of bound GTP. Biochemical and molecular genetic studies of the alpha-chain of Gs (alpha s) point to key regions that are involved in GTP-dependent conformational change and in hydrolysis of GTP. Tumorigenic mutations of alpha s in human pituitary tumors inhibit the protein's GTPase activity and cause constitutive elevation of adenylyl cyclase activity. One such mutation replaces a Gln residue in alpha s that corresponds to Gln-61 of p21ras; mutational replacements of this residue in both proteins inhibit their GTPase activities. A second class of GTPase inhibiting mutations in alpha s occurs in the codon for an Arg residue whose covalent modification by cholera toxin also inhibits GTP hydrolysis by alpha s. This Arg residue is located in a domain of alpha s not represented in EF-Tu or p21ras. We propose that this domain constitutes an intrinsic activator of GTP hydrolysis, and that it performs a function analogous to that performed for EF-Tu by the programmed ribosome and for p21ras by the recently discovered GTPase-activating protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine) at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine) at codon 57. In addition, we found in the same patient's sample a silent polymorphism at codon 11 (Ala11Ala) of exon 1.  相似文献   

8.
The effect of a series of mutations on the transforming potential of normal human rasH has been compared with their effects on GTPase and guanine nucleotide exchange rates of p21. The mutation Val-146 resulted in partial activation of transforming potential which could be attributed to a greater than 1,000-fold-increased rate of nucleotide exchange in the absence of an effect on GTPase. In contrast, the more modest enhancement of exchange rate (approximately 100-fold) which resulted from the mutation Met-14 did not affect biological activity. The partially activating mutation Thr-59 was found to result in both a 5-fold reduction in GTPase and a 10-fold increase in nucleotide exchange. However, the nontransforming mutant Ile-59 displayed a comparable decrease in GTPase without an effect on nucleotide exchange. The activating effect of the Thr-59 mutation may thus represent a combined effect of reduced GTPase and increased exchange. Similarly, the strongly activating mutation Leu-61 resulted in a fivefold increase in nucleotide exchange in addition to decreased GTPase, whereas weakly activating mutations at position 61 (Trp and Pro) resulted only in decreased GTPase without affecting nucleotide exchange rates. Finally, combining the two mutations Met-14 and Ile-59, which alone had no effect on biological activity, yielded a double mutant with a 20-fold increased transforming potential, demonstrating a synergistic effect of these two mutations. Overall, these results indicate that large increases in nucleotide exchange can activate ras transforming potential in the absence of decreased GTPase and that relatively modest increases in nucleotide exchange can act synergistically with decreased GTPase to contribute to ras activation.  相似文献   

9.
We sought to determine whether decreased in vitro GTPase activity is uniformly associated with ras p21 mutants possessing efficient transforming properties. Normal H-ras p21-[Gly12-Ala59] as well as an H-ras p21-[Gly12-Thr59] mutant exhibited in vitro GTPase activities at least fivefold higher than either H-ras p21-[Lys12-Ala59] or H-ras p21-[Arg12-Thr59] mutants. Microinjection of as much as 6 X 10(6) molecules/cell of bacterially expressed normal H-ras p21 induced no detectable alterations of NIH/3T3 cells. In contrast, inoculation of 4-5 X 10(5) molecules/cell of each p21 mutant induced morphologic alterations and stimulated DNA synthesis. Moreover, the transforming activity of each mutant expressed in a eukaryotic vector was similar and at least 100-fold greater than that of the normal H-ras gene. These findings establish that activation of efficient transforming properties by ras p21 proteins can occur by mechanisms not involving reduced in vitro GTPase activity.  相似文献   

10.
The structure of Ras protein: a model for a universal molecular switch.   总被引:26,自引:0,他引:26  
X-ray crystallography has revealed the molecular architecture of the cellular and oncogenic forms of p21Ha-ras, the protein encoded by the human Ha-ras gene, in both its active (GTP-bound) and in its inactive (GDP-bound) forms. From comparison of these two structures, a mechanism is suggested for the GTPase hydrolysis reaction that triggers the conformational change necessary for signal transduction. The structures have also allowed identification of the structural consequences of point mutations and the way in which they interfere with the intrinsic GTPase activity of p21ras. The p21ras structure is similar to that of the G-domain of elongation factor Tu (EF-Tu) from Escherichia coli, suggesting that p21ras can serve as a good model for other guanine nucleotide binding proteins.  相似文献   

11.
Mutational replacements of specific residues in the GTP-binding pocket of the 21-kDa ras proteins (p21ras) reduce their GTPase activity. To test the possibility that the cognate regions of G protein alpha chains participate in GTP binding and hydrolysis, we compared signaling functions of normal and mutated alpha chains (termed alpha s) of Gs, the stimulatory regulator of adenylyl cyclase. alpha s chains were expressed in an alpha s-deficient S49 mouse lymphoma cell line, cyc-. alpha s in which leucine replaces glutamine 227 (corresponding to glutamine 61 of p21ras) constitutively activates adenylyl cyclase and reduces the kcat for GTP hydrolysis more than 100-fold. There is a smaller reduction in GTPase activity in another mutant in which valine replaces glycine 49 (corresponding to glycine 12 of p21ras). This mutant alpha s is a poor activator of adenylyl cyclase. Moreover, the glycine 49 protein, unlike normal alpha s, is not protected against tryptic cleavage by hydrolysis resistant GTP analogs; this finding suggests impairment of the mutant protein's ability to attain the active (GTP-bound) conformation. We conclude that alpha s residues near glutamine 227 and glycine 49 participate in binding and hydrolysis of GTP, although the GTP binding regions of alpha s and p21ras are not identical.  相似文献   

12.
Activated ras proto-oncogenes contribute to the pathogenesis of many animal and human malignancies. ras proto-oncogenes are generally activated by point mutations within codons 12 or 61, which result in the expression of ras protein (p21) bearing characteristic single amino acid substitutions at the corresponding residues. The purpose of the current study was to determine whether the presence of single transforming amino acid substitutions can render normal ras protein immunogenic and, thus, a possible target for T cell-mediated tumor therapy. In initial experiments, C57BL/6 mice were immunized with a synthetic peptide corresponding to residues 5 through 16 of p21 containing the transforming substitution of arginine for normal glycine at residue 12. The results demonstrated that class II MHC-restricted T cells which were specific for the peptide could be elicited, and that the peptide-induced T cells could specifically recognize the corresponding intact p21 ras protein. Recognition of p21 ras protein by peptide-specific T cells implies that C57BL/6 APC can process the activated ras protein in a fashion that allows presentation of digested protein by class II MHC molecules in a configuration similar to the configuration with synthetic peptide. Evaluation of the immunogenicity of peptides containing alternative transforming amino acid substitutions of ras protein demonstrated that some, but not all, were immunogenic in individual strains of mice. Therefore, although ras protein-specific T cells can be elicited by immunization with synthetic peptides, not all of the potential ras mutations commonly associated with malignancy may be recognizable by T cells from all individuals.  相似文献   

13.
The transforming activity of naturally arising ras oncogenes results from point mutations that affect residue 12 or 61 of the encoded 21-kilodalton protein (p21). By use of site-directed mutagenesis, we showed that deletions and insertions of amino acid residues in the region of residue 12 are also effective in conferring oncogenic activity on p21. Common to these various alterations is the disruption that they create in this domain of the protein, which we propose results in the inactivation of a normal function of the protein.  相似文献   

14.
T cell stimulation via the TCR complex (TCR/CD3 complex) results in activation of the guanine nucleotide binding proteins encoded by the ras protooncogenes (p21ras). In the present study we show that the activation state of p21ras in T lymphocytes can also be controlled by triggering of the CD2 Ag. The activation state of p21ras is controlled by GTP levels on p21ras. In T cells stimulation of protein kinase C is able to induce an accumulation of "active" p21ras-GTP complexes due to an inhibitory effect of protein kinase C stimulation on the intrinsic GTPase activity of p21ras. The regulatory effect of protein kinase C on p21ras GTPase activity appears to be mediated via regulation of GAP, the GTPase activating protein of p21ras. In the present report, we demonstrate that the TCR/CD3 complex and the CD2 Ag control the accumulation of p21ras-GTP complexes via a regulatory effect on p21ras GTPase activity. The TCR/CD3 complex and CD2 Ag are also able to control the cellular activity of GAP. These data demonstrate that p21ras is part of the signal transduction responses controlled by the CD2 Ag, and reveal that the TCR/CD3 complex and CD2 Ag control the activation state of p21ras via a similar mechanism.  相似文献   

15.
An Ala-to-Thr substitution at position 59 activates the transforming properties of the p21ras protein without impairment of GTPase activity, a biochemical alteration associated with other activating mutations. To investigate the basis for the transforming properties of the Thr-59 mutant, we characterized guanine nucleotide release. This reaction exhibited a slow rate and stringent temperature requirements. To further dissect the release reaction, we used monoclonal antibodies directed against different epitopes of the p21 molecule. One monoclonal specifically interfered with nucleotide release, while others which recognized different regions of the molecule blocked nucleotide binding. Mutants with the Thr-59 substitution exhibited a three- to ninefold-higher rate of GDP and GTP release than normal p21 or mutants with other activating lesions. This alteration in the Thr-59 mutant would have the effect of increasing its rate of nucleotide exchange. In an intracellular environment with a high GTP/GDP ratio, this would favor the association of GTP with the Thr-59 mutant. Consistent with knowledge of known G-regulatory proteins, these findings support a model in which the p21-GTP complex is the biologically active form of the p21 protein.  相似文献   

16.
R Langen  T Schweins  A Warshel 《Biochemistry》1992,31(37):8691-8696
The residue Gln61 is assumed to play a major role in the mechanism of ras p21, and mutations of this residue are often found in human tumors. Such mutations lead to a major reduction in the rate of GTP hydrolysis by the complex of ras p21 and the GTPase activating protein (GAP) and lock the protein in a growth-promoting state. This work examines the role of Gln61 in ras p21 by using computer simulation approaches to correlate the structure and energetics of this system. Free energy perturbation calculations and simpler electrostatic considerations demonstrate that Gln61 is unlikely to serve as the general base in the intrinsic GAP-independent reaction of p21. Glutamine is already a very weak base in water, and surprisingly the GlnH+ OH-reaction intermediate is even less stable in the protein active site than in the corresponding reaction in water. The electrostatic field of Glu63, which could in principle stabilize the protonated Gln61, is found to be largely shielded by the surrounding solvent. However, it is still possible that Gln61 is a general base in the GAP/ras p21 complex since this system could enhance the electrostatic effect of Glu63. It is also possible that the gamma-phosphate acts as general base and that Gln61 accelerates the reaction by stabilizing the OH- nucleophile. If such a mechanism is operative, then GAP may enhance the effect of Gln61 by preorienting its hydrogen bonds in the transition-state configuration.  相似文献   

17.
Point mutations of ras oncogenes are an early event in thyroid tumorigenesis   总被引:13,自引:0,他引:13  
Identifying the nature of the genetic mutations in thyroid neoplasms and their prevalence in the various tumor phenotypes is critical to understanding their pathogenesis. Mutational activation of ras oncogenes in human tumors occurs predominantly through point mutations in two functional regions of the molecules, codons 12, 13 (GTP-binding domain) or codon 61 (GTPase domain). We examined the prevalence of point mutations in codons 12, 13, and 61 of the oncogenes K-ras, N-ras, and H-ras in benign and malignant human thyroid tumors by hybridization of PCR-amplified tumor DNA with synthetic oligodeoxynucleotide probes. None of the eight normal thyroid tissues harbored point mutations. Four of nineteen nodules from multinodular goiters (21%), 6/24 microfollicular adenomas (25%), 3/14 papillary carcinomas (21%), and 0/3 follicular carcinomas contained ras point mutations. The predominant mutation was a valine for glycine substitution in codon 12 of H-ras. None of the multinodular goiter tumors known to be polyclonal (and thus due to hyperplasia) had point mutations, whereas one of the two monoclonal adenomas arising in nodular glands contained in H-ras codon 12 valine substitution, which was confirmed by sequencing the tumor DNA. These data show that ras activation is about equally prevalent in benign and malignant thyroid neoplasms, and thus may be an early event in the tumorigenic process.  相似文献   

18.
The human rap2 gene encodes a 183 amino acid protein that shares 46% identity with the K-ras p21. Its cDNA was engineered and inserted into the bacterial expression vector ptac; this allowed the production of high levels of soluble recombinant protein in Escherichia coli that was purified to near homogeneity. The rap2 protein binds GTP and exhibits a low intrinsic GTPase activity (rate constant of 0.5 x 10(-2) min-1). It exchanges its bound GDP with a half-life of 18 min at 37 degrees C in the presence of 10 mM Mg2+. Under the same conditions, the dissociation of bound GTP was at least 25-fold slower showing that the rap2 protein has a much higher affinity for GTP than GDP. The contribution of individual domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 12 results in a 2-fold decrease in the GDP dissociation rate constant and GTPase activity. Replacement of the Ser at position 17 by Asn severely impairs the GTP binding ability of the protein and points to an important role of this residue in the coordination of Mg2+. Mutation of Thr-35 to Ala results in a decreased affinity for GTP and a reduction (3-fold) of the GTPase activity. Finally, substitution of Thr-145 by Ile leads to an imperfect binding of guanyl nucleotides as exemplified by an increase in their dissociation rate constants and reduction of the GTPase activity of the protein. These properties of the normal and mutant rap2 proteins are compared with those of ras p21 carrying similar substitutions and are discussed in relation to the structural models proposed for ras p21.  相似文献   

19.
Regulatory mechanisms for ras proteins.   总被引:12,自引:0,他引:12  
The proteins encoded by the ras proto-oncogenes play critical roles in normal cellular growth, differentiation and development in addition to their potential for malignant transformation. Several proteins that are involved in the control of the activity of p21ras have now been characterised. p120GAP stimulates the GTPase activity of p21ras and hence acts as a negative regulator of ras proteins. It may be controlled by tyrosine phosphorylation or association with tyrosine phosphorylated proteins. The neurofibromatosis type 1 (NF 1) gene also encodes a potential GTPase activating protein which is likely to be subject to a different control mechanism. Guanosine nucleotide exchange factors for p21ras have now been identified: these may be positive regulators of ras protein function. It appears that p21ras is subject to rapid regulation by several distinct mechanisms which are likely to vary in different cell types; the ras proteins are thereby able to act as very sensitive cellular monitors of the extracellular environment.  相似文献   

20.
p21ras is palmitoylated on a cysteine residue near the C-terminus. Changing Cys-186 to Ser in oncogenic forms produces a non-palmitoylated protein that fails to associate with membranes and does not transform NIH 3T3 cells. To examine whether palmitate acts in a general way to increase ras protein hydrophobicity, or is involved in more specific interactions between p21ras and membranes, we constructed genes that encode non-palmitoylated ras proteins containing myristic acid at their N-termini. Myristoylated, activated ras, without palmitate (61Leu/186Ser) exhibited both efficient membrane association and full transforming activity. Unexpectedly, we found that myristoylated forms of normal cellular ras were also potently transforming. Myristoylated c-ras retained the high GTP binding and GTPase characteristic of the cellular protein and, moreover, bound predominantly GDP in vivo. This implied that it continued to interact with GAP (GTPase-activating protein). While the membrane binding induced by myristate permitted transformation, only palmitate produced a normal (non-transforming) association of ras with membranes and must therefore regulate ras function by some unique property that myristate does not mimic. Myristoylation thus represents a novel mechanism by which the ras proto-oncogene protein can become transforming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号