首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abe Widra 《Mycopathologia》1959,11(3):177-184
Summary Nuclear division inCandida albicans during budding and blastospore formation is described. Classic mitotic division as it occurs in the higher ascomycetes is not seen. Instead, the semi-lunar (crescentic) chromatinic material in the nucleus increases so as to fill the nuclear vesicle, often assuming a toroid-like aspect. The nucleus then divides into two crescentic masses one of which migrates to the daughter cell. No external centriole or spindle apparatus could be observed. No chromosomes could be resolved. Nuclear division in the mold phase duplicated that found in the yeast phase. Colchicine treatment of yeast phase cells resulted in the appearance of large polynucleate and polyploid cells in one strain ofC. albicans.Supported by U.S.P.H.S. Grant E-1700.  相似文献   

2.
The position of the division plane affects cell shape and size, as well as tissue organization. Cells of the fission yeast Schizosaccharomyces pombe have a centrally placed nucleus and divide by fission at the cell center. Microtubules (MTs) are required for the central position of the nucleus. Genetic studies lead to the hypothesis that the position of the nucleus may determine the position of the division plane. Alternatively, the division plane may be positioned by the spindle or by morphogen gradients or reaction diffusion mechanisms. Here, we investigate the role of MTs in nuclear positioning and the role of the nucleus in division-plane positioning by displacing the nucleus with optical tweezers. A displaced nucleus returned to the cell center by MT pushing against the cell tips. Nuclear displacement during interphase or early prophase resulted in asymmetric cell division, whereas displacement during prometaphase resulted in symmetric division as in unmanipulated cells. These results suggest that the division plane is specified by the predividing nucleus. Because the yeast nucleus is centered by MTs during interphase but not in mitosis, we hypothesize that the establishment of the division plane at the beginning of mitosis is an optimal mechanism for accurate symmetric division in these cells.  相似文献   

3.
Two groups have recently developed physical techniques to manipulate the position of the nucleus in fission yeast. Their studies reveal how microtubules confine the nucleus to the cell center, and indicate how the position of the cleavage plane during cell division is coordinated with that of the nucleus.  相似文献   

4.
涡鞭毛虫(甲藻)类(Dinoflagellate)由于其细胞周期的任何时候核中都含有致密的染色体结构,且其化学组成上缺乏通常真核生物所含的几种组蛋白组份,因而在进化上具有独特的地位。1971年Dodge首次发现波罗底海多甲藻(Peridinium balticum)含有两种不同类型的核,其中大核为涡鞭毛虫类所固有的核,小核却属于真核类型。以后别人又陆续有所发现,但迄今含有两种类型的核的涡鞭毛虫已报道的还是不多的。除上  相似文献   

5.
Lesser CF  Miller SI 《The EMBO journal》2001,20(8):1840-1849
Bacterial virulence proteins that are translocated into eukaryotic cells were expressed in Saccharomyces cerevisiae to model human infection. The subcellular localization patterns of these proteins in yeast paralleled those previously observed during mammalian infection, including localization to the nucleus and plasma membrane. Localization of Salmonella SspA in yeast provided the first evidence that SspA interacts with actin in living cells. In many cases, expression of the bacterial virulence proteins conferred genetically exploitable growth phenotypes. In this way, Yersinia YopE toxicity was demonstrated to be linked to its Rho GTPase activating protein activity. YopE blocked polarization of the yeast cytoskeleton and cell cycle progression, while SspA altered polarity and inhibited depolymerization of the actin cytoskeleton. These activities are consistent with previously proposed or demonstrated effects on higher eukaryotes and provide new insights into the roles of these proteins in pathogenesis: SspA in directing formation of membrane ruffles and YopE in arresting cell division. Thus, study of bacterial virulence proteins in yeast is a powerful system to determine functions of these proteins, probe eukaryotic cellular processes and model mammalian infection.  相似文献   

6.
The fission yeast Schizosaccharomyces pombe provides a genetic model system for the study of cytokinesis. As in many eukaryotes, cell division in the fission yeast requires an actin-myosin-based contractile ring. Numerous components of the contractile ring that function in ring assembly, positioning and contraction have been characterized. Many of these proteins are evolutionarily conserved, suggesting that common molecular mechanisms may govern aspects of eukaryotic cell division. Recent advances in the assembly and placement of the contractile ring are discussed. In particular, major findings have been made in the characterization of myosins in cytokinesis, and in how the cell division site may be positioned by the nucleus.  相似文献   

7.
Alic Koopmans 《Genetica》1977,47(3):187-195
A study is made of nuclear division in Nematospora coryli, a pathogenic yeast. The DNA of cells (grown on a V-8-medium) was stained with leuco-basic fuchsin (Feulgen test) at pH 3.5. After budding has started the rounded nucleus elongates and some differentiation into chromosomes is perceptible. A few slides suggest the number of chromosomes being 4. After some time the nucleus appears to have duplicated. This nucleus migrates towards the isthmus between mother cell and bud. In the isthmus, or just in front of it, the two daughter nuclei proceed to disjoin and move along each other to opposite directions. One daughter nucleus moves into the bud; the other one migrates back into the mother cell.Samples from synchronously growing cultures show that a fraction of the young yeast cells are destined to grow out to asci, in which after about 6 hours the presence of bivalents seems highly probable. The succeeding nuclear divisions take place in the same way as described for the vegetative cells and stop when the majority of the enlarged asci contain 8 nuclei.Problems of haploidy and diploidy are discussed.Small, densely stained bodies are observed in certain vegetative and some meiotic stages. As these bodies contain DNA, their function and possible homology with centrioles is discussed.  相似文献   

8.
One fundamental problem in cytokinesis is how the plane of cell division is established. In this review, we describe our studies on searching for "signals" that position the cell division plane, using fission yeast Schizosaccharomyces pombe. First, we take a genetic approach to determine how the nucleus may position the contractile ring in fission yeast. mid1p appears to link the position of the ring with the nuclear position, as it is required for proper placement of the contractile ring and is localized in a band at the cell surface overlying the nucleus. Second, we study how microtubules may function in the establishment of cell polarity at the cell tips. tea1p may be deposited on the cell surface by microtubules and function to recruit proteins involved in making actin structures. These studies suggest how microtubules may direct the assembly of the contractile ring in animal cells.  相似文献   

9.
The protein Mei2 performs at least two functions required in fission yeast for the switch from mitotic to meiotic cell cycles. One of these functions also requires meiRNA. It appears that meiRNA targets Mei2 to the nucleus, where it can promote the first meiotic division.  相似文献   

10.
Entamoeba histolytica: cell cycle and nuclear division   总被引:1,自引:0,他引:1  
The cell cycle of Entamoeba histolytica, the duration of its phases, and the details of the nuclear division stages are described in this paper. Trophozoites from clone L-6, strain HM1:IMSS, were synchronized by colchicine. Synchrony was observed immediately after treatment and cultures remained synchronous for at least three replicative cycles with synchrony indexes between 13 and 15 hr. The stages of nuclear division were studied by light and electron microscopy. Four stages of the nuclear division were defined: prophase, early anaphase, late anaphase, and telophase. No metaphase stage was observed by light or electron microscopy. One of the first events in the nuclear division was the presence of a bud close to the juxtanuclear body, which grew to a daughter nucleus. The karyosome and the nuclear membrane remained throughout the mitotic process. Bundles of intranuclear microtubules were observed forming a "V" from the center of the nucleus to one of the poles, and associated with them, 12 to 16 chromosomes-like structures appeared. The results of these studies strongly suggest that division of E. histolytica involved a pleuromitotic process which is carried out in about 120 min.  相似文献   

11.
In fission yeast as well as in higher eukaryotic organisms, entry into mitosis is delayed in cells containing damaged or unreplicated DNA. This is accomplished in part by maintaining the Cdc25 phosphatase in a phosphorylated form that binds 14-3-3 proteins. In this study, we generated a mutant of fission yeast Cdc25 that is severely impaired in its ability to bind 14-3-3 proteins. Loss of both the DNA damage and replication checkpoints was observed in fission yeast cells expressing the 14-3-3 binding mutant. These findings indicate that 14-3-3 binding to Cdc25 is required for fission yeast cells to arrest their cell cycle in response to DNA damage and replication blocks. Furthermore, the 14-3-3 binding mutant localized almost exclusively to the nucleus, unlike wild-type Cdc25, which localized to both the cytoplasm and the nucleus. Nuclear accumulation of wild-type Cdc25 was observed when fission yeast cells were treated with leptomycin B, indicating that Cdc25 is actively exported from the nucleus. Nuclear exclusion of wild-type Cdc25 was observed upon overproduction of Rad 24, one of the two fission yeast 14-3-3 proteins, indicating that one function of Rad 24 is to keep Cdc25 out of the nucleus. In support of this conclusion, Rad 24 overproduction did not alter the nuclear location of the 14-3-3 binding mutant. These results indicate that 14-3-3 binding contributes to the nuclear exclusion of Cdc25 and that the nuclear exclusion of Cdc25 is required for a normal checkpoint response to both damaged and unreplicated DNA.  相似文献   

12.
The size of the nucleus increases as yeast cells grow   总被引:4,自引:0,他引:4       下载免费PDF全文
It is not known how the volume of the cell nucleus is set, nor how the ratio of nuclear volume to cell volume (N/C) is determined. Here, we have measured the size of the nucleus in growing cells of the budding yeast Saccharomyces cerevisiae. Analysis of mutant yeast strains spanning a range of cell sizes revealed that the ratio of average nuclear volume to average cell volume was quite consistent, with nuclear volume being approximately 7% that of cell volume. At the single cell level, nuclear and cell size were strongly correlated in growing wild-type cells, as determined by three different microscopic approaches. Even in G1-phase, nuclear volume grew, although it did not grow quite as fast as overall cell volume. DNA content did not appear to have any immediate, direct influence on nuclear size, in that nuclear size did not increase sharply during S-phase. The maintenance of nuclear size did not require continuous growth or ribosome biogenesis, as starvation and rapamycin treatment had little immediate impact on nuclear size. Blocking the nuclear export of new ribosomal subunits, among other proteins and RNAs, with leptomycin B also had no obvious effect on nuclear size. Nuclear expansion must now be factored into conceptual and mathematical models of budding yeast growth and division. These results raise questions as to the unknown force(s) that expand the nucleus as yeast cells grow.  相似文献   

13.
Cell division of thymus lymphoid cells from embrynonic and young rats was investigated cytologically on cell smears, focusing attention on asymmetric cell division. Some of thymic lymphoblasts displayed features implicating asymmetric cell division. At the telophase of such cells, two immature daughter cells looked dissimilar: one of them was smaller in size and possessed a more condensed nucleus, compared with the counterpart cell. Furthrmore, in most cases the cytoplasm of the smaller daughter cell was stained with Giemsa more deeply. It was suggested that the asymmetry of the nucleus emerges at anaphase and telophase probably due to some polarized situation of the cytoplasm. Asymmetrically-dividing cells were relatively frequently observed during the developmental period when large lymphoblasts actively transform into smaller lymphocytes :16% to 17% of whole dividing cells were under asymmetric cell division on days 16 and 17 of gestation, while less than 5% on day 19 or thereafter. In correlation with this observation, asymmetrically-dividing cells were more frequently observed among large lymphoblasts than among other smaller cell fractions. These results support the view that the asymmetric cell division may play some essential role in the transformation of large lymphoblasts into smaller lymphocytes.  相似文献   

14.
15.
A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL   总被引:50,自引:29,他引:21       下载免费PDF全文
The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope.  相似文献   

16.
Anthers of Capsicum annuum L. were cultured on Murashige and Skoog (MS) medium containing 0.1 mg l−1 NAA and 0.1 mg l−1 kinetin. Inoculated anthers were subjected to 31 °C and development of microspores in anthers of varying stages was observed cytologically using 4′-6-diamidino-2-phenylindol-2HCl (DAPI). Pepper was characterized by a strong asynchrony of pollen development within a single anther. Percentage of pollen at different stages changed with the culture period, and the proportion of dead pollen increased drastically from day 2 after culture. Microspores that were cultured at the late-uninucleate stage followed one of two developmental pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen. Embryogenic pollen was formed by repeated divisions of the vegetative nucleus. In the second pathway, which occurred in fewer microspores, the first division was symmetric and both nuclei divided repeatedly to form embryogenic pollen. In early-bicellular pollen, sporophytic pollen was produced through division of the vegetative nucleus. In mid-bicellular pollen, the generative nucleus may undergo division to produce two or more sperm-like nuclei. However, division of the generative nucleus alone to form the embryo was never observed. The anther stage optimal for embryo production contained a large proportion (>75%) of early-binucleate pollen. Associations were found among the percentage of early-binucleate pollen, the frequency of embryogenic multinucleate pollen, and the yield of pollen embryos.  相似文献   

17.
During the mating of yeast Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. This process requires the functions of BiP/Kar2p, a member of the Hsp70 family in the endoplasmic reticulum, and its partner protein, Jem1p. To investigate further the role of BiP and Jem1p in nuclear fusion, we screened for partner proteins for Jem1p by the yeast two-hybrid system and identified Nep98p. Nep98p is an essential integral membrane protein of the nuclear envelope and is enriched in the spindle pole body (SPB), the sole microtubule-organizing center in yeast. Temperature-sensitive nep98 mutant cells contain abnormal SPBs lacking the half-bridge, suggesting the essential role of Nep98p in the organization of the normal SPB. Additionally, nep98 mutant cells show defects in mitotic nuclear division and nuclear fusion during mating. Because Jem1p is not required for nuclear division, Nep98p probably has dual functions in Jem1p-dependent karyogamy and in Jem1p-independent nuclear division.  相似文献   

18.
Early events, such as formation of the cell wall, first nuclear division and first unequal division of the zygote, were examined following in vitro fusion of single egg and sperm protoplasts of maize ( Zea mays L.). The time course of these events was determined. The formation of cell wall components was observed 30 sec following egg—sperm fusion and proceeded continuously thereafter. Within 15 h after fusion most of the organelles became more densely grouped around the nucleus of the zygote. In the in vitro produced zygote the location of the cell organelles and of the dividing nucleus showed polarity. Two nucleoli were first observed 18 h after gamete fusion. The zygotic nucleus remained undivided for about 40 h. The first cell division was observed 40–60 h, generally 42–46 h, after egg—sperm fusion. The non-fused egg cell could be triggered to sporophytic development in vitro by pulses of high amounts of 2,4-D. Without such a treatment, cultured egg cells of different maize lines did not divide. Although nuclear fusion seemed to occur, fusion products of two egg cells also did not divide. Cell wall formation was incomplete and non-uniform, showing a polarity of cultured egg cells and fusion products of two egg protoplasts. Cell division was also induced after fusion of maize egg with sperms of genetically remote species, such as Coix, Sorghum, Hordeum or Triticum . These gametic heterologous fusion products developed to microcalli. Moreover, cell division occurred in fusion products of an egg and a diploid somatic cell-suspension protoplast from maize.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号