首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Indirect evidence implicates leptin resistance in the pathogenesis of the lipotoxicity that complicates obesity and results in the metabolic syndrome. In this issue of Developmental Cell, two groups identify protein tyrosine phosphatase 1B (PTP1B) as a cause of leptin resistance through dephosphorylation of Jak2.  相似文献   

7.
8.
9.
10.
11.
12.
Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified beta-catenin, a component of adherens junctions, as a substrate of Pez by a "substrate trapping" approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of beta-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including beta-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro "wound" assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.  相似文献   

13.
14.
15.
Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) has been implicated in the regulation of cell growth and actin rearrangement mediated by several receptor tyrosine kinases, including platelet-derived growth factor and epidermal growth factor. Here we identify the Xenopus laevis homolog of LMW-PTP1 (XLPTP1) as an additional positive regulator in the fibroblast growth factor (FGF) signaling pathway during Xenopus development. XLPTP1 has an expression pattern that displays substantial overlap with FGF receptor 1 (FGFR1) during Xenopus development. Using morpholino antisense technology, we show that inhibition of endogenous XLPTP1 expression dramatically restricts anterior and posterior structure development and inhibits mesoderm formation. In ectodermal explants, loss of XLPTP1 expression dramatically blocks the induction of the early mesoderm gene, Xbrachyury (Xbra), by FGF and partially blocks Xbra induction by Activin. Moreover, FGF-induced activation of mitogen-activated protein (MAP) kinase is also inhibited by XLPTP1 morpholino antisense oligonucleotides; however, introduction of RNA encoding XLPTP1 is able to rescue morphological and biochemical effects of antisense inhibition. Inhibition of FGF-induced MAP kinase activity due to loss of XLPTP1 is also rescued by an active Ras, implying that XLPTP1 may act upstream of or parallel to Ras. Finally, XLPTP1 physically associates only with an activated FGFR1, and this interaction requires the presence of SNT1/FRS-2 (FGFR substrate 2). Although LMW-PTP1 has been shown to participate in other receptor systems, the data presented here also reveal XLPTP1 as a new and important component of the FGF signaling pathway.  相似文献   

16.
17.
18.
19.
The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases PPM1G and PP1γ. Here we systematically screened all human phosphatase gene products for a regulatory role in the SMN complex. We used the accumulation of SMN in Cajal bodies of intact proliferating cells, which actively assemble snRNPs, as a readout for unperturbed SMN complex function. Knockdown of 29 protein phosphatases interfered with SMN accumulation in Cajal bodies, suggesting impaired SMN complex function, among those the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP. Knockdown of PTPN23 also led to changes in the phosphorylation pattern of SMN without affecting the assembly of the SMN complex. We further show interaction between SMN and PTPN23 and document that PTPN23, like SMN, shuttles between nucleus and cytoplasm. Our data provide the first comprehensive screen for SMN complex regulators and establish a novel regulatory function of PTPN23 in maintaining a highly phosphorylated state of SMN, which is important for its proper function in snRNP assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号