首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pineal function during ethanol intoxication, dependence, and withdrawal   总被引:3,自引:0,他引:3  
Pineal melatonin and serotonin content were determined during one to four days of continuous intoxication, and during the alcohol withdrawal syndrome. The nocturnal rise in pineal melatonin was blunted in continuously intoxicated animals, however this was found to be unrelated to duration of treatment. The initial dependent-intoxicated phase of the alcohol withdrawal syndrome produced a reduction of nocturnal pineal melatonin content with a concomitant elevation in pineal serotonin. The overt withdrawal phase of the alcohol withdrawal syndrome had no effect on pineal melatonin or serotonin content. This data suggests that ethanol may perturb pineal melatonin synthesis either directly, or indirectly by altered receptor function. Contrary to our expectations the pineal may not be a useful model to probe the physiology of increased noradrenergic neurotransmission produced by ethanol withdrawal.  相似文献   

2.
The peeling reaction, the process by which oligosaccharides are degraded in alkali, was used as the basis for an assay to provide structural information about glycosidically linked oligosaccharides in glycoproteins. Glycoproteins were treated with 0.05 M NaOH at 50 degrees to induce release, and subsequent degradation ("peeling"), of glycosidically linked, but not of N-glycosydically linked, oligosaccharides. Among the degradation products generated from O-linked chains were three 3-deoxy sugar acids whose formation was correlated with certain structural features of the oligosaccharides. N-Acetylneuraminic acid was released from terminal positions in the oligosaccharides, and iso- and meta-saccharinic acids were derived from the degradation of 4-O- and 3-O-substituted hexoses, respectively. All of these sugar acids were detected colorimetrically by periodate oxidation and reaction of the product with 2-thiobarbituric acid. The ability of the method to generate 3-deoxy sugar acids was tested in 8 alkali-treated glycoproteins. 3-Deoxy sugar acids were detected only in those glycoproteins whose glycosidically linked carbohydrates contained N-acetylneuraminic acid, or 3-O- or 4-O-substituted hexoses, or both. As little as 0.12 microgram of 3-deoxy sugar acid produced from 5 micrograms of human chorionic gonadotropin was sufficient for detection. This method is novel in its ability to distinguish sialylation of glycosidically linked carbohydrates. Furthermore, it combines the specificity of beta-elimination with the sensitivity of the 2-thiobarbituric acid assay in targeting degradation products of the peeling reaction as candidates for an assay method.  相似文献   

3.
目的研究乙醇、丙酮和氯化钙是否影响间苯二酚法测定W135群脑膜炎球菌荚膜多糖(group W135 meningococcal capsular polysaccharide)唾液酸(sialic acid)含量。方法用苯酚法制备W135群脑膜炎球菌荚膜多糖;分别定量检测唾液酸和W135群脑膜炎球菌荚膜多糖添加不同质量浓度乙醇、丙酮和氯化钙,用间苯二酚法测定其唾液酸含量,检测乙醇、丙酮和氯化钙对间苯二酚测定唾液酸含量的影响。结果添加质量浓度≥39.5μg/mL的乙醇和≥9.9μg/mL的丙酮对唾液酸含量测定均有影响,其中乙醇影响不明显,丙酮的影响极为明显,而不同加入量的氯化钙均对唾液酸含量的测定无影响。结论乙醇和丙酮对间苯二酚法测定唾液酸含量有影响,二者可能会对W135群脑膜炎球菌荚膜多糖质量控制产生影响。  相似文献   

4.
Cloning, expression, and characterization of sialic acid synthases   总被引:2,自引:0,他引:2  
The most commonly occurring sialic acid, N-acetylneuraminic acid, is the repeating unit in polysialic acid chain of human neuronal cell adhesion molecule as well as in capsular polysialic acid of neuroinvasive bacteria, Escherichia coli K1 and Neisseria meningitidis. Sialic acid synthesis and polymerization occur in slightly different pathways in animals and bacteria. N-Acetylneuraminic acid (NeuNAc) is synthesized by the condensation of phosphoenolpyruvate and N-acetylmannosamine by NeuNAc synthase in bacteria. The mammalian homologue N-acetylneuraminic acid-9-phosphate (NeuNAc-9-P) synthase uses N-acetylmannosamine-6-phosphate in the condensation reaction to produce NeuNAc-9-P. Both subfamilies of sialic acid synthases possess N-terminal triosephosphate isomerase barrel domain and C-terminal antifreeze protein domain. We report cloning of the genes, expression, purification, and characterization of human NeuNAc-9-P synthase and N. meningitidis NeuNAc synthase. Stability of the purified enzymes and effects of pH and temperature on their activities were evaluated. Enzyme kinetics and preliminary mutagenesis experiments reveal the importance of C-terminal antifreeze protein domain and a conserved cysteine residue for the enzyme activities.  相似文献   

5.
6.
Guinea pigs after 30, 60 and 90 days of cholesterol, ethanol and cholesterol + ethanol action have been studied for content of cholesterol, lipoproteins of certain classes, quantitative and qualitative composition of blood serum proteins. It has been found that cholesterol does not induce expressed hypercholesterinemia and does not hinder cholesterol accumulation in the blood serum and liver of animals. The specific activity of [3H] cholesterol in the liver under cholesterinosis and its combination with ethanol intoxication for the whole period of experiments is lower than in the control, which testifies to retardation of its renewal. This may stimulate development of pathological hypercholesterinemia-induced states. After 3-month ethanol intoxication the amount of alkaline serum proteins has grown and ethanol retains its action against a background of hypercholesterinemia. The found effect is supposed to reflect one of the compensatory mechanisms for hypercholesterinemia and atherogenesis prevention.  相似文献   

7.
酒是生活中常见的饮品,过度饮酒会对机体产生毒害作用。要防治急性酒精中毒首要的就是了解乙醇的代谢途径以及致病机制,从而找到加速乙醇代谢,减轻危害的方法。因为菌群与乙醇代谢相关,并可以通过菌群修复乙醇带来的损伤。本研究以乙醇代谢和损伤机制为基础,对菌群调节乙醇代谢及对酒精中毒的缓解作用进行综述。  相似文献   

8.
An immobilized enzyme system has been developed and employed to determine the concentration of sialic acid (N-acetylneuraminic acid) in human serum and urine. Two enzyme pairs, neuramindiase-Neu-5-Ac lyase and pyruvate oxidase-peroxidase, have been respectively co-immobilized onto 1,12-aminododecane-agarose with glutaraldehyde. The relative specific activity of the co-immobilized neuraminidase and Neu-5-Ac lyase were 60% and 78%, and those of pyruvate oxidase and peroxidase were 50% and 95% of the corresponding soluble enzymes, respectively. The optimal reaction pH at 37 degrees C for each of the co-immobilized enzymes was about one pH unit higher than that of the corresponding soluble enzyme. The optimal reaction temperature of each enzyme was increased as a result of immobilization. The thermal stability at 45 degrees C of the immobilized neuraminidase, Neu-5-Ac lyase, pyruvate oxidase, and peroxidase were increased 80-, 83-, 115-, and 147-fold, respectively. Km and Vm of each immobilized and co-immobilized enzyme have also been determined. The system provided a convenient and rapid method to determine the concentration of total sialic acid without pretreatment of the sample. The results correlated satisfactorily with those obtained by using a soluble enzyme system. The co-immobilized enzymes were stable for at least 1 year of 500 tests when used repeatedly. The system is thus a reproducible and reliable novel assay method for sialic acid in the serum or urine sample.  相似文献   

9.
Polymorphonuclear leukocyte (PMN) surface membrane glycoproteins are probably involved in the phenomenon of stimulus-response coupling. Consequently, we examined the effects of either removal or oxidation of surface membrane-associated sialic acid residues on some responses of human PMN to chemotactic factors. Treatment of human PMN with either neuraminidase or sodium metaperiodate did not affect the ability of these cells to migrate randomly, but did inhibit their ability to respond chemotactically to the synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). Treated PMN responded normally, however, to the complement-derived peptide C5a, and to the lipoxygenase product leukotriene B4. Enzymatic removal or oxidation of membrane sialic acid residues did not affect either FMLP-induced PMN degranulation or FMLP-induced generation by PMN of superoxide anion radicals. Removal of sialic acid did not significantly alter specific binding of [3H]FMLP to its receptor(s) on the PMN membrane. These findings indicate that sialic acid residues on the PMN surface membrane play an important role in modulating PMN responses to FMLP.  相似文献   

10.
The selectins are a family of carbohydrate-binding proteinsthat have been implicated in the initial interaction betweenleukocytes and the vascular endothelium. The three members ofthis family will bind to the sialyl-Lewisx epitope [Sia  相似文献   

11.
Sialic acids are critical components of many glycoconjugates involved in biologically important ligand-receptor interactions. Quantitative and structural variations of sialic acid residues can profoundly affect specific cell-cell, pathogen-cell, or drug-cell interactions, but manipulation of sialic acids in mammalian cells has been technically limited. We describe the finding of a previously unrecognized and efficient uptake and incorporation of sialic acid analogues in mammalian cells. We added 16 synthetic sialic acid analogues carrying distinct C-1, C-5, or C-9 substitutions individually to cell cultures of which 10 were readily taken up and incorporated. Uptake of C-5- and C-9-substituted sialic acids resulted in the structural modification of up to 95% of sialic acids on the cell surface. Functionally, binding of murine sialic acid-binding immunoglobulin-like lectin-2 (Siglec-2, CD22) to cells increased after N-glycolylneuraminic acid treatment, whereas 9-iodo-N-acetylneuraminic acid abolished binding. Furthermore, susceptibility to infection by the B-lymphotropic papovavirus via a sialylated receptor was markedly enhanced following pretreatment of host cells with selected sialic acid analogues including 9-iodo-N-acetylneuraminic acid. This novel experimental strategy allows for an efficient biosynthetic engineering of surface sialylation in living cells. It is versatile, extending the repertoire of modification sites at least to C-9 and enables detailed structure-function studies of sialic acid-dependent ligand-receptor interactions in their native context.  相似文献   

12.
Purified rat liver lysosomes were incubated in 0.2 M sialic acid resulting in an increase in lysosomal free sialic acid of 3.8 +/- 1.5 nmol/unit beta hexosaminidase. Sialic acid loss by these lysosomes was stimulated 2-3 fold by 25 mM sodium phosphate. Loss of sialic acid by lysosomes from cultured human diploid fibroblasts was similar to that observed in rat liver lysosomes while loss of sialic acid by lysosomes from cultured fibroblasts from a patient with infantile Salla disease occurred much more slowly. Salla disease appears to be the consequence of defective lysosomal transport of sialic acid and is analogous to cystinosis, a disorder of lysosomal amino acid transport.  相似文献   

13.
Plasma membrane proteins were isolated from control and ethanol-treated rat livers by the use of two-dimensional gel electrophoresis (IEF-SDS-PAGE). Two groups of proteins differing in their response to ethanol were analysed and termed as ethanol-sensitive proteins (ESP) and ethanol insensitive proteins (EISP). This study indicates a loss of many membrane-associated proteins and strongly suggests a role for these proteins in the mechanism of plasma membrane disruption by ethanol.  相似文献   

14.
15.
16.
The sialic acids are a family of nine carbon alpha-keto acids that play a wide variety of biological roles in nature. In mammals, they are found at the distal ends of cell surface glycoconjugates, and thus are major determinants of cellular recognition and adhesion events. In certain strains of pathogenic bacteria, they are found in capsular polysaccharides that mask the organism from the immune system by mimicking the exterior of a mammalian cell. This review outlines recent developments in the understanding of the two main enzymes responsible for the biosynthesis of the sialic acid, N-acetylneuraminic acid. The first, a hydrolyzing UDP-N-acetylglucosamine 2-epimerase, generates N-acetylmannosamine and UDP from UDP-N-acetylglucosamine. The second, sialic acid synthase, generates either N-acetylneuraminic acid (bacteria) or N-acetylneuraminic acid 9-phosphate (mammals) in a condensation reaction with phosphoenolpyruvate. An emphasis is placed on an understanding of the mechanistic and structural features of these enzymes.  相似文献   

17.
18.
Structural insights into sialic acid enzymology   总被引:1,自引:0,他引:1  
Sialic acids are a diverse family of negatively charged sugars that play essential biological roles. Their presence and relative abundance in different cells is ultimately regulated by the concerted action of a large set of enzymes. In this review, we focus on the most recent advances on the enzymes that govern sialic acid metabolism, with emphasis on structural work. Major progress has been made in dissecting the catalytic mechanism of sialidases, revealing a modified scenario of the typical glycosidase ping-pong mechanism. Similarly, X-ray structures of sialyltransferases uncover significant variations of formerly known glycosyltransferase foldings. Both sialidases and sialyltransferases seem to tell us that sialic acid-handling enzymes have evolved important modifications related to the distinctive features of sialic acid itself.  相似文献   

19.
Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.  相似文献   

20.
聚唾液酸与唾液酸的研究进展   总被引:3,自引:0,他引:3  
唾液酸是一族神经氨酸(Neuraminic acid)的衍生物。聚唾液酸(Polysialic acid)是唾液酸(Sialic acid)单体以α-2,8或α-2,9键连接的直链同聚物,是一些哺乳动物细胞中糖蛋白的组成部分和少数几种细菌的胞外多糖组分。综述了唾液酸和聚唾液酸的结构、性质、生物学功能、生物合成和生产应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号