首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hitherto unknown function of granulocyte colony-stimulating factor (G-CSF) was found using cultured endothelial cells. G-CSF stimulated activity of plasminogen activator (PA) in both extracellular and intracellular milieus of endothelial cells obtained from bovine carotid and aortic artery. This effect was dependent on the concentration of G-CSF added to the culture medium and on the treatment time. The extracellular activity was enhanced approximately 5-fold at a concentration of 5,000 colony-forming unit (CFU)/ml (2.6 nM) and in about a 15-hr treatment period. Analyses by fibrin and reverse fibrin autography revealed that activity of PA was much more increased than that of PA inhibitor in endothelial cells treated with G-CSF.  相似文献   

2.
3.
HeLa cells synthesize and secrete increased levels of tissue plasminogen activator (tPA) when incubated for 18 h with 10-20 nM phorbol myristate acetate. This response was inhibited by a number of conditions which affect intracellular Na+ and K+ concentrations. Removing extracellular Na+, while maintaining isotonicity with choline+, reduced the secretion of both functional and antigenic tPA in a linear fashion. A series of cardiac glycosides and related compounds strongly inhibited tPA secretion with the following rank order of potency: digitoxin = ouabain greater than digoxin greater than digitoxigenin greater than digoxigenin greater than digitoxose greater than digitonin. These compounds also inhibited cellular Na+/K+-ATPase activity over an identical concentration range. Two compounds which selectively increase cellular permeability to K+, valinomycin, and nigericin, strongly inhibited tPA secretion, with IC50 values of approximately 50 nM. In contrast, monensin, which selectively increases cellular permeability to Na+, was much less active. Valinomycin, but not nigericin, also inhibited cellular Na+/K+-ATPase activity. Phorbol myristate acetate, 5-20 nM, increased Na+/K+-ATPase activity up to 2-fold and tPA secretion up to 15-fold. We conclude that the secretion of tPA by HeLa cells treated with phorbol myristate acetate proceeds via a mechanism which requires extracellular Na+ and a functional Na+/K+-ATPase ("sodium pump") enzyme.  相似文献   

4.
Cellular glutathione levels may exceed vitamin C levels by 10-fold, generating the question about the real antioxidant role that low intracellular concentrations of vitamin C can play in the presence of a vast molar excess of glutathione. We characterized the metabolism of vitamin C and its relationship with glutathione in primary cultures of human endothelial cells oxidatively challenged by treatment with hydrogen peroxide or with activated cells undergoing the respiratory burst, and analyzed the manner in which vitamin C interacts with glutathione to increase the antioxidant capacity of cells. Our data indicate that: (i) endothelial cells express transporters for reduced and oxidized vitamin C and accumulate ascorbic acid with participation of glutathione-dependent dehydroascorbic acid reductases, (ii) although increased intracellular levels of vitamin C or glutathione caused augmented resistance to oxidative stress, 10-times more glutathione than vitamin C was required, (iii) full antioxidant protection required the simultaneous presence of intracellular and extracellular vitamin C at concentrations normally found in vivo, and (iv) intracellular vitamin C cooperated in enhancing glutathione recovery after oxidative challenge thus providing cells with enhanced survival potential, while extracellular vitamin C was recycled through a mechanism involving the simultaneous neutralization of oxidant species. Therefore, in endothelial cells under oxidative challenge, vitamin C functions as an essential cellular antioxidant even in the presence of a vast molar excess of glutathione.  相似文献   

5.
Yoshino A  Suzuki K  Urano T  Aoki K  Takada Y  Kazui T  Takada A 《Life sciences》2002,70(12):1461-1470
Tissue-type plasminogen activator (tPA) is a key enzyme in the fibrinolysis system and the regulation of its expression has been extensively studied in cultured vascular endothelial cells. Many kinds of supplements including growth factors are needed, however, to keep endothelial cells viable, which leads the culture condition far from the physiological milieu. Using a new device of amorphous calcium phosphate coated culture plate, we succeeded in culturing ring-cut gastroepiploic artery in a basic medium of RPMI 1640 containing 10% fetal calf serum. The overall normal vessel architecture and the antigenicity of von Willebrand factor, tPA and plasminogen activator inhibitor type 1 (PAI-1) were retained for at least 9 days. tPA was constantly secreted into the conditioned medium at least up to day 12. Employing this organ culture technique, we analyzed the effects of two well-known profibrinolytic vitamins of retinoic acid (Vit. A) and ascorbic acid (Vit. C) on the release of tPA and PAI-1. The cultured artery responded well and the tPA secretion was enhanced by factors of 1.5 fold by Vit. A, 1.7 fold by Vit C and 3.2 fold by their combination, whereas none of these stimuli increased PAI-1 secretion. These results suggested that the cultured ring-cut artery retained functional endothelial cells for at least 9 days and was suitable in analyzing the regulatory mechanism of protein synthesis and secretion from the vascular wall. Using this method, vitamins A and C were shown to lead the intravascular condition to a profibrinolytic state.  相似文献   

6.
The nature of the trypsin-activatable plasminogen activator produced by kidney cell cultures (Bernik, M.B. (1973), J. Clin. Invest. 52, 823–834) was investigated using human embryonic kidney (HEK) cell cultures in serum-free medium. Plaminogen activator activity ratios (trypsin-activated/ untreated controls) in HEK cell-conditioned media were maximal (up to 3) during the first week of culture and remained nearly constant at approximately 2 for the next 3–5 weeks, while the total plasminogen activator titer increased in a nearly linear manner. Therefore, coincident with progressive cell dengeration and death, the ratios decreased to near unity due to “spontaneous” activation of the enzyme, which was inhibited in cell-free conditioned media by the pancreatic trypsin inhibitor Kunitz and benzamidine. Since the activator is not inhibited by the trypsin inhibitor, it is concluded that a protease other than the plasminogen activator is responsible for the activation. Increases in the plasminogen activator titers (about 2-fold) were similarly obtained by culturing the cells in medium containing low concentrations (0.05–0.10 μg/ml) of trypsin for up to about 6 weeks. The presence of the trypsin inhibitor in HEK cell cultures decreased the rate of activation, resulting in higher activity ratios (up to 6), and the total plasminogen activator activity was reduced only minimally (<20%), if at all, by the highest concentration of the trypsin inhibitor (100 μg/ml) tested.Affinity chromatography of conditioned media with activity ratios of 1.6–2 separated the plasminogen activator into an active fraction and a fraction which was activated a minimum of 200-fold by trypsin and contained no measurable activity prior to activation. Gel filtration of crude conditioned media or partially purified activator separated the plasminogen activator activity into two peaks; both were trypsin-activatable, and their relative proportions varied with the isolation conditions. The results indicate the occurrence of a proenzyme form of the plasminogen activator in the culture media.  相似文献   

7.
The ability of acetyl-LDL to stimulate macrophage-dependent plasminogen activation and degradation of extracellular matrix was examined. We have found that expression of plasminogen activator activity in response to the scavenger receptor ligand varied among cell populations. Exposure to acetyl-LDL stimulated plasminogen activator expression by cells which constitutively released low levels of activator. These include a virally transformed macrophage-like cell line (RAW246.7), concanavalin A and C. parvum-activated macrophages. The stimulation of plasminogen activator activity was independent of cellular lipid accumulation since nonlipoprotein inhibitors of acetyl-LDL binding to the scavenger receptor stimulated activator expression in great excess to that observed with acetyl-LDL. In contrast, acetyl-LDL was unable to induce soluble plasminogen activator activity in cells which normally do not express it. These include a macrophage-like cell line (J774A.1) and resident peritoneal macrophages. Furthermore, acetyl-LDL was unable to modulate the copious secretion of activator by inflammatory macrophages elicited with thioglycolate. When macrophages were tested for their ability to degrade smooth muscle cell derived matrix, solubilization by resident, elicited, and activated cells was variously increased in the presence of plasminogen. Furthermore, exposure to acetyl-LDL enhanced plasmin-dependent degradation by resident cells and activated cells, whereas matrix degradation by elicited cells was unaffected.  相似文献   

8.
The effect of diets containing antioxidant vitamins and trace elements on chicken tissue activities of SOD, CAT, GSH-Px and of LPO levels was investigated. Chickens, 45 weeks of age were divided into six groups: control group, Cu group (13.2 mg Cu kg(-1) diet); Se group (0.07 mg Se kg(-l) diet); vitamin E group (70 mg DL-alpha-tocopherol acetate kg(-1) diet) and a constant level vitamin C, 200 mg kg(-1) diet); vitamin A group (240 mg retinol acetate kg(-1) diet) and vitamin C group (500 mg ascorbic acid kg(-1) diet). Significant variation of these antioxidant enzyme activities and LPO levels according to gender was demonstrated statistically. In the Cu group, CuZnSOD activity in the liver, erythrocyte, kidney and heart significantly increased by 75, 40, 12, 12% respectively (P<0.05). MnSOD activity in the heart, liver, kidney and brain of the vitamin C and in the heart of Cu group were found to be increased by approximately 15%, while in liver tissue of the Cu group it was reduced by 19% (P<0.05). GSH-Px activities in the Se, vitamin E and C groups were significantly increased, conversely LPO levels decreased (P<0.001). CAT activities in the liver and heart of the vitamin C group were significantly decreased (by 32%), but in kidney tissue only that of the Cu group was increased from 30.2 +/- 4.767 to 144.49 +/- 6.93 U mg(-1) P<0.001. The resistance to stress of the vitamin E and C groups, which had significantly increased activities of antioxidant enzymes and decreased lipid peroxide levels, were determined in 60% moisture medium at 45 degrees C.  相似文献   

9.
Phorbol 12-myristate 13-acetate, 1-20 nM, induced the synthesis in HeLa cells of a 65 200 Mr tissue-type plasminogen activator, and of prostaglandin E2. Omission of Ca2+ from the incubation medium inhibited the induction of plasminogen activator synthesis by 40-60% and abolished the induction of prostaglandin E2 synthesis. Maximal plasminogen activator synthesis could be maintained at extracellular Ca2+ concentrations of approx. 0.1 mM, while maximal prostaglandin synthesis required at least 0.45-0.9 mM Ca2+. The induction of each factor was inhibited by 10-100 microM 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular C2+ mobilization. Prostaglandin synthesis, but not plasminogen activator synthesis, was also inhibited by 10-100 microM verapamil and nifedipine, which inhibit intracellular Ca2+ uptake via the so-called 'slow-channels' and by 0.5-10 microM trifluoperazine, an inhibitor of calmodulin. Neither plasminogen activator synthesis nor prostaglandin synthesis were stimulated by 5-50 microM 1-oleoyl-2-acetylglycerol or 1-250 microM 1,2-dioctanoylglycerol, alone and in combination with 50 nM-1 microM ionophore A23187. These results indicate that the synthesis of plasminogen activator and prostaglandins in HeLa cells is Ca2+-dependent, and that the Ca2+ requirements for each process are not identical. Thus, Ca2+ regulation of the production of tissue plasminogen activator and prostaglandin E2 occurs at multiple points in their biosynthetic pathways.  相似文献   

10.
To study structure/function relationships of tissue plasminogen activator (t-PA) activity, one of the simplest modified t-PA structures to activate plasminogen in a fibrin-dependent manner was obtained by constructing an expression vector that deleted amino acid residues 4-175 from the full-length sequence of t-PA. The expression plasmid was introduced into a Syrian hamster cell line, and stable recombinant transformants, producing high levels of the modified plasminogen activator, were isolated. The resulting molecule, mt-PA-6, comprising the second kringle and serine protease domains of t-PA, produced a doublet of plasminogen activator activity having molecular masses of 40 and 42 kDa. The one-chain mt-PA-6 produced by cultured Syrian hamster cells was purified in high yield by affinity and size exclusion chromatography. The purified mt-PA-6 displayed the same two types of microheterogeneity observed for t-PA. NH2-terminal amino acid sequencing demonstrated that one-chain mt-PA-6 existed in both a GAR and a des-GAR form. Purified mt-PA-6 also existed in two glycosylation forms that accounted for the 40- and 42-kDa doublet of activity produced by the cultured Syrian hamster cells. Separation of these two forms by hydrophobic interaction chromatography and subsequent tryptic peptide mapping demonstrated that both forms contained N-linked glycosylation at Asn448; in addition, some mt-PA-6 molecules were also glycosylated at Asn184. Plasmin treatment of one-chain mt-PA-6 converted it to a two-chain molecule by cleavage of the Arg275-Ile276 bond. This two-chain mt-PA-6, like t-PA, had increased amidolytic activity. The fibrinolytic specific activities of the one- and two-chain forms of mt-PA-6 were similar and twice that of t-PA. The plasminogen activator activity of one-chain mt-PA-6 was enhanced greater than 80-fold by CNBr fragments of fibrinogen, and the one-chain enzyme lysed human clots in vitro in a dose-dependent manner. The ability to produce and purify a structurally simple plasminogen activator with desirable fibrinolytic properties may aid in the development of a superior thrombolytic agent for the treatment of acute myocardial infarction.  相似文献   

11.
Plasminogen activators are highly selective proteases that activate the proenzyme plasminogen to the general protease, plasmin. We studied a porcine kidney cell line, originally isolated as a high producer of plasminogen activator, in which activities of cellular adenylate cyclase and cAMP-dependent protein kinase are increased in response to calcitonin. We found that salmon calcitonin, in the concentration range 0.03-300 nM, increased plasminogen activator production up to approximately 1,000-fold and concurrently inhibited cell multiplication; both of these effects were reversible. Human calcitonin was approximately 0.01 times as potent as salmon calcitonin, corresponding to potency differences observed in other biological systems. Plasminogen activator production was also stimulated by other agents that raise cellular cAMP levels such as cholera toxin, phosphodiesterase inhibitors, and vasopressin, but not to the same extent as by calcitonins. The rapidity and sensitivity of the plasminogen activator determination and other cellular responses may make it possible in the future to use this cell stain in a convenient bioassay for calcitonins and their analogues.  相似文献   

12.
The kinetics of activation of Glu-plasminogen (Glu-Pg) and Lys77-Pg by two-chain recombinant tissue plasminogen activator (t-PA) were determined in the presence of isolated protein components of the extracellular matrix (ECM) and compared to activation in the presence of fibrinogen and fibrinogen fragments and in the absence of added protein. Several ECM protein components were as effective as fibrinogen fragments at stimulating Pg activation. Stimulation of Glu-Pg activation resulted from both a decrease in Km and an increase in Vmax, whereas stimulation of Lys77-Pg was due primarily to increases in Vmax. The most effective stimulators of activation were basement membrane type IV collagen and gelatin which resulted in a 21- and 55-fold increase, respectively, in the kcat/Km of Glu-Pg (relative to a 10-fold increase observed with fibrinogen fragments). Amidolytic activity of t-PA was also enhanced up to 12-fold by ECM proteins. However, plasmin amidolytic activity was unaffected by the presence of added proteins. These data suggest that several ECM-associated proteins can enhanced the activation of Pg in the absence of fibrin.  相似文献   

13.
14.
A one-chain recombinant tissue-type plasminogen activator (EC 2.4.31.-) (tPA) analogue was constructed in which Arg-275 of the activation site was changed to Gly by site-directed mutagenesis. This analogue, tPA-Gly275, was very resistant to plasmin (EC 2.4.21.5) cleavage. It has been used to gain information about the activity of the uncleaved one-chain tPA form, also when plasmin is generated as a result of a plasminogen activation reaction. The amidolytic activity of tPA-Gly275 with less than Glu-Gly-Arg-pNA was investigated and compared to that of one-chain and two-chain wild-type recombinant tPA. A small but significant intrinsic amidolytic activity was observed with the analogue as well as the wild-type one-chain tPA form. However, it was much lower than that of two-chain tPA. Polymerised fibrin enhanced the amidolytic activity of both one-chain tPA forms but not of two-chain tPA. Measurements of the plasminogen activation kinetics in the absence of fibrin revealed that tPA-Gly275 possessed a significant intrinsic activity. However, it was 30-fold lower than that of two-chain tPA. Addition of polymerised fibrin profoundly enhanced the plasminogen activation rate of both tPA-Gly275 and wild-type one- and two-chain tPA to approximately the same maximal level. The results were interpreted to mean that fibrin binding can induce an activated state of the intact tPA one-chain form.  相似文献   

15.
To examine the mechanism by which vitamins C and E alter phagocyte function, a series of in vitro manipulations were conducted with cells isolated from the head-kidney of hybrid striped bass (average weight 680 g) fed a diet supplemented with minimum requirement levels of vitamins C and E for 2 weeks. Head-kidney phagocytes were cultured in media containing physiologically deficient (23 microM, adequate (45 microM) or excessive (182 microM) concentrations of vitamin C, and physiologically deficient (5 microM), adequate (9 microM) or excessive (32 microM) concentrations of vitamin E for 18 h. Following culture and stimulation, levels of reactive oxygen intermediates and hydrogen peroxide were determined. There were no effects of vitamin C or vitamin E concentrations on hydrogen peroxide or extracellular O2- generation. Intracellular O2- production, however, was significantly (P < or = 0.05) affected. When vitamin C was supplied at deficient levels to the medium, vitamin E elevated O2- production to levels not different from those of cells incubated with requirement levels of both vitamins. Similarly, when vitamin E was deficient in the media, vitamin C supplementation at requirement levels normalised intracellular O2- production. This data provides support for the presence of a vitamin C and vitamin E sparing mechanism in phagocytic head-kidney cells of hybrid striped bass and yield some insight into the mechanisms by which vitamin C and vitamin E function in immunomodulation.  相似文献   

16.
The C1300 mouse neuroblastoma cell line was found to produce plasminogen activator which is secreted into the growth medium. The intra- and extracellular activities of this enzyme were markedly increased (up to 14 fold) by treatment with cyclic AMP agents. Prostaglandins E1 and E2 and butyric acid were the most efficient inducers followed by propionic acid and dibutyryl cyclic AMP. Theophylline was found to be ineffective. The highest enzyme activities were found in cells exposed simultaneously to prostaglandin E1 and dibutyryl cyclic AMP.  相似文献   

17.
Metastasizing tumor cells invade host tissues by degrading extracellular matrix constituents. We report here that the highly sulfated glycosaminoglycans, heparin and heparan sulfate, as well as the sulfated polysaccharide, fucoidan, significantly enhanced tumor cell invasionin vitrointo fibrin, the basement membrane extract, Matrigel, or through a basement membrane-like extracellular matrix. The enhancement of tumor cell invasion was due to a stimulation of the proteolytic cascade of plasminogen activation since the effect required plasminogen activation and was abolished by inhibitors of urokinase-type plasminogen activator (uPA) or plasmin. Sulfated polysaccharides enhanced five reactions of tumor-cell initiated plasminogen activation in a dose-dependent manner. They amplified plasminogen activation in culture supernatants up to 70-fold by stimulating (i) pro-uPA activation by plasmin and (ii) plasminogen activation by uPA. (iii) In addition, sulfated polysaccharides partially protected plasmin from inactivation by α2-antiplasmin. Sulfated polysaccharides also stimulated tumor-cell associated plasminogen activation, e.g., (iv) cell surface pro-uPA activation by plasmin and (v) plasminogen activation by cell surface uPA. These results suggest that sulfated glycosaminoglycans liberated by tumor-cell mediated extracellular matrix degradationin vivomight amplify pericellular plasminogen activation and locally enhance tumor cell invasion in a positive feedback manner.  相似文献   

18.
19.
During ovulation, enzymatic degradation of the extracellular matrix occurs within and around the graafian follicles. In this study, the activities of several different proteolytic enzymes were measured in the culture media of follicles taken from pregnant mare serum gonadotropin (PMSG)-primed immature rats. At 52 h after PMSG, the follicles were cultured for 2 to 15 h in media with or without human chorionic gonadotropin (hCG). Type I collagenase activity in hCG-stimulated follicles gradually increased within 6 h to 3.3-fold above that of the controls. Relatively pure populations of granulosa cells produced type I collagenase to a similar extent. Likewise, type IV collagenase increased 3.8-fold by 6 h after exposure of the follicles to hCG. In contrast, plasminogen activator activity increased by 3.9-fold at 2 h after hCG, but was negligible at 4, 6, and 15 h after incubation. These results suggest that plasminogen activator may activate both type I and type IV collagenase in hCG-stimulated ovulatory follicles.  相似文献   

20.
Urokinase synthesized by human A431 epidermoid carcinoma cells is phosphorylated on serine (Mastronicola, M. R., Stoppelli, M. P., Migliaccio, A., Auricchio, F., and Blasi, F. (1990) FEBS Lett. 266, 109-114). To test the possibility that phosphorylation may have specific effects on urokinase function, the phosphorylated and nonphosphorylated forms of urokinase were separated by Fe(3+)-Sepharose chromatography. Both forms exhibit indistinguishable Km and kcat for plasminogen activation. On the other hand, their sensitivity toward the specific plasminogen activator inhibitor type 1 is different as assessed by measuring both the stability of the covalent complex and the residual enzymatic activity. Phosphorylated urokinase was 50% inhibited at a concentration of plasminogen activator inhibitor type 1 4-fold higher than nonphosphorylated urokinase (0.7 versus 0.15 nM). Furthermore about 10% of phosphorylated urokinase was resistant to plasminogen activator inhibitor type 1 at a concentration as high as 20 nM. Thus, phosphorylation affects urokinase sensitivity to plasminogen activator inhibitor type 1, therefore resulting in a net, although indirect, increase of urokinase activity. These results suggest the existence of a novel cellular regulatory mechanism of extracellular proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号