首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to develop a convenient model to investigate the senescence of host defenses and the influence of food and nutrition. A small soil nematode, Caenorhabditis elegans, was grown for 3 days from hatching on a lawn of Escherichia coli OP50 as the normal food source, and subsequently some of the nematodes were fed lactic acid bacteria (LAB). The life spans of worms fed LAB were significantly longer than the life spans of those fed OP50. To investigate the effect of age on host defenses, 3- to 7-day-old worms fed OP50 were transferred onto a lawn of Salmonella enterica serovar Enteritidis for infection. The nematodes died over the course of several days, and the accumulation of salmonella in the intestinal lumen suggested that the worms were infected. The 7-day-old worms showed a higher death rate during the 5 days after infection than nematodes infected at the age of 3 days; no clear difference was observed when the worms were exposed to OP50. We then investigated whether the LAB could exert probiotic effects on the worms' host defenses and improve life span. Seven-day-old nematodes fed LAB from the age of 3 days were more resistant to salmonella than worms fed OP50 until they were infected with salmonella. This study clearly showed that LAB can enhance the host defense of C. elegans and prolong life span. The nematode appears to be an appropriate model for screening useful probiotic strains or dietetic antiaging substances.  相似文献   

2.
We describe the pathogenic interaction between a newly described gram-positive bacterium, Leucobacter chromiireducens subsp. solipictus strain TAN 31504, and the nematode Caenorhabditis elegans. TAN 31504 pathogenesis on C. elegans is exerted primarily through infection of the adult nematode uterus. TAN 31504 enters the uterus through the external vulval opening, and the ensuing uterine infection is strongly correlated with a significant reduction in host life span. Young worms can feed and develop on TAN 31504, but not preferably over the standard food source. C. elegans worms reared on TAN 31504 as the sole food source develop into thin adults with little intestinal fat stores, produce few progeny, and subsequently cannot persist on the pathogenic food source. Within 12 h of exposure, adult worms challenged with TAN 31504 alter the expression of a number of C. elegans innate immunity-related genes, including nlp-29, which encodes a neuropeptide-like protein. C. elegans worms exposed briefly to TAN 31504 develop lethal uterine infections analogous to worms exposed continuously to pathogen, suggesting that mere contact with the pathogen is sufficient for the host to become infected. TAN 31504 produces a robust biofilm, and this behavior is speculated to play a role in the virulence exerted on the nematode host. The interaction between TAN 31504 and C. elegans provides a convenient opportunity to study bacterial virulence on nematode tissues other than the intestine and may allow for the discovery of host innate immunity elicited specifically in response to vulva-uterus infection.  相似文献   

3.
The free-living nematode Caenorhabditis elegans is a useful model for studying the pharmacology of anthelmintics. Currently approved anthelmintics have various mechanisms of action, including activity at nematode nicotinic acetylcholine receptors (nAChRs). Classical anthelmintic agonists of these receptors (nicotine, levamisole, pyrantel and bephenium) caused intact specimens of C. elegans to undergo contracted paralysis. The nAChR antagonist mecamylamine paralysed intact worms and blocked the actions of the agonists. The time to onset of effects of these drugs was enhanced when worms bisected between the mid- and anterior-portions were tested. The novel anthelmintic nAChR antagonist derquantel (2-desoxoparaherquamide, 2-DOPH) was weakly active in intact specimens of C. elegans at concentrations of 50 μM over several days. No antagonism of the nAChR agonists was observed with this drug in intact worms. However, derquantel had direct and marked effects on motility in cut worms and blocked the effects of nAChR agonists in this preparation. A representative of the new amino-acetonitrile derivative (AAD) class of nAChR agonists was not antagonised by derquantel in cut C. elegans, suggesting that these two anthelmintics may not demonstrate unfavourable drug-drug interactions at the receptor level if used to treat livestock infected with parasitic nematodes. The permeability properties of the C. elegans cuticle may be more restrictive than those of adult parasites, calling into question primary anthelmintic screening strategies that rely on this model organism.  相似文献   

4.
In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.  相似文献   

5.
6.
Gomez F  Saiki R  Chin R  Srinivasan C  Clarke CF 《Gene》2012,506(1):106-116
Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 Escherichia coli, but their second generation homozygous progeny does not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5' and 3', respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q(10). Here we show that the Q(9) content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q(9) content, indicating that primary defect in both is limited to coq-3. The limited response of the coq-3 mutants to dietary supplementation with Q provides a powerful model to probe the effectiveness of exogenous Q supplementation as compared to restoration of de novo Q biosynthesis.  相似文献   

7.
Hahm JH  Kim S  Paik YK 《Aging cell》2011,10(2):208-219
Innate immune responses to pathogens are governed by the nervous system. Here, we investigated the molecular mechanism underlying innate immunity in Caenorhabditis elegans against Escherichia coli OP50, a standard laboratory C. elegans food. Longevity was compared in worms fed live or UV‐killed OP50 at low or high density food condition (HDF). Expression of the antimicrobial gene lys‐8 was approximately 5‐fold higher in worms fed live OP50, suggesting activation of innate immunity upon recognition of OP50 metabolites. Lifespan was extended and SOD‐3 mRNA levels were increased in gpa‐9‐overexpressing gpa‐9XS worms under HDF in association with robust induction of insulin/IGF‐1 signaling (IIS). Expression of ins‐7 and daf‐28 that control lys‐8 expression was reduced in gpa‐9XS, indicating that GPA‐9‐mediated immunity is due in part to ins‐7 and daf‐28 downregulation. Our results suggest that OP50 metabolites in amphid neurons elicit innate immunity through the IIS pathway, and identify GPA‐9 as a novel regulator of both the immune system and aging in C. elegans.  相似文献   

8.
Genetic analysis of host-pathogen interactions has been hampered by the lack of genetically tractable models of such interactions. We showed previously that the human opportunistic pathogen Pseudomonas aeruginosa kills Caenorhabditis elegans, that P. aeruginosa and C. elegans genes can be identified that affect this killing, and that most of these P. aeruginosa genes are also important for mammalian pathogenesis. Here, we show that Salmonella typhimurium as well as other Salmonella enterica serovars including S. enteritidis and S. dublin can also kill C. elegans. When C. elegans is placed on a lawn of S. typhimurium, the bacteria accumulate in the lumen of the worm intestine and the nematodes die over the course of several days. This killing requires contact with live bacterial cells. The worms die with similar kinetics when placed on a lawn of S. typhimurium for a relatively short time (3-5 hours) before transfer to a lawn of E. coli. After the transfer to E. coli, a high titer of S. typhimurium persists in the C. elegans intestinal lumen for the rest of the worms' life. Furthermore, feeding for 5 hours on a 1:1000 mixture of S. typhimurium and E. coli followed by transfer to 100% E. coli, also led to death after several days. This killing correlated with an increase in the titer of S. typhimurium in the C. elegans lumen, which reached 10,000 bacteria per worm. These data indicate that, in contrast to P. aeruginosa, a small inoculum of S. typhimurium can proliferate in the C. elegans intestine and establish a persistent infection. S. typhimurium mutated in the PhoP/PhoQ signal transduction system caused significantly less killing of C. elegans.  相似文献   

9.
Aging is a multifactorial process with many mechanisms contributing to the decline. Mutations decreasing insulin/IGF-1 (insulin-like growth factor-1) or TOR (target of rapamycin) kinase-mediated signaling, mitochondrial activity and food intake each extend life span in divergent animal phyla. Understanding how these genetically distinct mechanisms interact to control longevity is a fundamental and fascinating problem in biology. Here we show that mutational inactivation of autophagy genes, which are involved in the degradation of aberrant, damaged cytoplasmic constituents accumulating in all aging cells, accelerates the rate at which the tissues age in the nematode Caenorhabditis elegans. According to our results Drosophila flies deficient in autophagy are also short-lived. We further demonstrate that reduced activity of autophagy genes suppresses life span extension in mutant nematodes with inherent dietary restriction, aberrant insulin/IGF-1 or TOR signaling, and lowered mitochondrial respiration. These findings suggest that the autophagy gene cascade functions downstream of and is inhibited by different longevity pathways in C. elegans, therefore, their effects converge on autophagy genes to slow down aging and lengthen life span. Thus, autophagy may act as a central regulatory mechanism of animal aging.  相似文献   

10.
Caenorhabditis elegans is a widely accepted model system for parasitic nematodes, drug screening and developmental studies. Similar to parasitic worms, C. elegans expresses glycosphingolipids and glycoproteins carrying, in part, phosphorylcholine (PCho) substitutions, which might play important roles in nematode development, fertility and, at least in the case of parasites, survival within the host. With the exception of a major secretory/excretory product from Acanthocheilonema viteae (ES-62), no protein carrying this epitope has been studied in detail yet. Here we report on the identification, characterization and localization of the aspartyl protease ASP-6 of C. elegans, which is excreted by the nematode in a PCho-substituted form. Within the worm, most prominent expression of the protein is observed in the intestine, while muscle and epithelial cells express asp-6 to a lesser extent. In animals harboring an ASP-6::GFP fusion protein, diffuse fluorescence throughout the body cavity of adult worms indicates that the chimeric protein is secreted.  相似文献   

11.
Larval nematode parasites (Spiruroidea: Cystidicolidae) are recorded for the first time in Octopus vulgaris Cuvier, 1797 in the northeastern Atlantic Ocean. Prevalence was 16% and mean intensity was 1.46 worms/host. Body length of larval nematodes ranges from 8.3 to 9.3 mm, with a distance from the anterior end to nerve ring from 187.5 to 200 microm, and to excretory pore 194.6-350 microm. Anatomical characteristics, such as deirid, nerve ring, cephalic alae, excretory pore, pseudolabia amphids, sclerotized protuberance, and anus, examined using light microscopy (LM) or scanning electron microscopy (SEM), are illustrated. The nematode was designed as a cystidicolid "Type A" larva. The hemocytic infiltration present in the host tissue around the nematode capsule and the mechanical compression in the infected organs denote the pathogenicity of this nematode. In the study area, O. vulgaris may play the role of an intermediate or paratenic host in the nematode life cycle.  相似文献   

12.
Bacterial pathogens have shaped the evolution and survival of organisms throughout history, but little is known about the evolution of virulence mechanisms and the counteracting defence strategies of host species. The nematode model organisms, Caenorhabditis elegans and Pristionchus pacificus, feed on a wealth of bacteria in their natural soil environment, some of which can cause mortality. Previously, we have shown that these nematodes differ in their susceptibility to a range of human and insect pathogenic bacteria, with P. pacificus showing extreme resistance compared with C. elegans. Here, we isolated 400 strains of Bacillus from soil samples and fed their spores to both nematodes. Spores of six Bacillus strains were found to kill C. elegans but not P. pacificus. While the majority of Bacillus strains are benign to nematodes, observed pathogenicity is restricted to either the spore or the vegetative stage. We used the rapid C. elegans killer strain (Bacillus sp. 142) to conduct a screen for hypersusceptible P. pacificus mutants. Two P. pacificus mutants with severe muscle defects and an extended defecation cycle that die rapidly on Bacillus spores were isolated. These genes were identified to be homologous to C. elegans, unc-22 and unc-13. To test whether a similar relationship between defecation and bacterial pathogenesis exists in C. elegans, we used five known defecation mutants. Quantification of the defecation cycle in mutants also revealed a severe effect on survival in C. elegans. Thus, intestinal peristalsis is critical to nematode health and contributes significantly to survival when fed Gram-positive bacteria.  相似文献   

13.
《Animal behaviour》2002,63(2):269-275
Talitrid amphipods spend their days burrowed in sand to avoid predators as well as desiccation and heat stress, although other factors may influence burrowing depth. We investigated the potential role of mermithid nematode parasites in determining burrowing depth in the amphipod Talorchestia quoyana. Mermithids grow as parasites inside amphipods until they reach adulthood, when they must emerge from their host into moist sand to complete their life cycle and reproduce. When allowed to burrow to a depth of their choice in experimental situations, large amphipods burrowed deeper than small ones. In addition, deep-burrowing amphipods were more likely to be infected by mermithid nematodes, and harboured longer worms, on average, than amphipods that burrowed close to the sand surface. This last result is not an artefact of the larger size of deep-burrowing amphipods: the increase in worm length with increasing depth was found after statistical correction for host size. In other words, amphipods that burrowed deeper harboured longer worms than expected based on their body size, whereas those that stayed near the surface of the sand column harboured worms shorter than one would expect based on host size. This implies that the greater burrowing depth of infected amphipods is a consequence, and not a cause, of infection. These results emphasize the importance of parasitism as a determinant of the small-scale spatial distribution of their hosts.  相似文献   

14.
The study aimed to determine the optimum density of free‐living nematodes in feeding bighead carp, Aristichthys nobilis, larvae. In the first experiment, carp stocked at 25 larvae L?1 were fed varying levels of nematodes (50, 75, 100, 125 and 150 per ml) twice a day for 21 days from the start of exogenous feeding. Final body weight was significantly higher (P < 0.05) in larvae fed 125 and 150 nematodes per ml than in those fed 50 and 75 per ml, but survival was low (61.8 and 63.6%, respectively). Survival rate was highest in larvae fed 100 nematodes ml?1 (81.3%). Carcass analysis showed that larvae fed 125 and 150 nematodes ml?1 had significantly lower body protein and higher body lipid than those fed other nematode densities. Carcass ash was similar for larvae fed 50–100 nematodes ml?1 but it decreased significantly at the higher nematode densities. Carp larvae in a subsequent experiment were given 50, 75 and 100 nematodes ml?1 per feeding. Newly hatched Artemia was the control feed. Nematode consumption and growth of the larvae were determined. Larvae were sampled at intervals of 2–4 days and the nematodes in the gut were counted and measured. At each nematode density, the number of nematodes present in the gut of the larvae increased significantly with time. At each sampling day, the number of nematodes in the gut did not differ significantly among treatments (P > 0.05) although it tended to increase with nematode density at day 2 and day 4 but decrease at day 7 onward. The carp larvae consumed significantly shorter nematodes on day 2 and day 4 than on the succeeding sampling days regardless of nematode density. However, the length of nematodes in the gut of the larvae did not differ significantly among the nematode densities. The final body weight of larvae increased with increasing nematode density. The body weight of larvae fed 100 nematodes ml?1 did not differ significantly from that of larvae given Artemia nauplii. Results show that bighead carp larvae should be fed 100 free‐living nematodes per ml at each feeding time.  相似文献   

15.
Adult desert locusts were experimentally infected per os with 30, 50, or 60 Mermis nigrescens eggs, and changes in the host physiology were recorded. Larval nematodes were recovered from the hemocoel and counted at appropriate times after infection. The food consumption and blood volume of the host were unaffected by the parasitism, but the nematode significantly impaired the ability of male locusts to excrete the injected dye, amaranth, from their hemolymph. The total carbohydrate in the hemolymph of infected male and female locusts was severely depleted during the active growth period of the nematode and the possible utilization of these carbohydrates by the nematode are discussed. The total amino acid and protein levels in the blood of the host were unaffected by the nematode development, although concomittant changes in the levels of both these blood metabolites occurred in all locusts throughout the experimental period. However, although changes of this nature reflected the normal pattern of protein synthesis during oocyte development and oviposition in control locusts, the nematode suppressed oocyte development and caused oocyte resorption in the female host. The nematode did not significantly affect the level of total protein and amino acids in the flight muscles of male and female locusts, but a significant decrease in the level of fat body proteins and amino acids was recorded in infected hosts 16 and 21 days after infection. The possible effect of the nematode on protein metabolism by the host fat body is discussed in relation to the nutritional requirements of the nematode and involvement of the host endocrine system.  相似文献   

16.
Tan L  Darby C 《Journal of bacteriology》2004,186(15):5087-5092
Bubonic plague is transmitted by fleas whose feeding is blocked by a mass of Yersinia pestis in the digestive tract. Y. pestis and the closely related Y. pseudotuberculosis also block the feeding of Caenorhabditis elegans by forming a biofilm on the nematode head. C. elegans mutants with severe motility defects acquire almost no biofilm, indicating that normal animals accumulate the biofilm matrix as they move through a Yersinia lawn. Using the lectin wheat germ agglutinin as a probe, we show that the matrix on C. elegans contains carbohydrate produced by Yersinia. The carbohydrate is present in bacterial lawns prior to addition of nematodes, indicating that biofilm formation does not involve signaling between the two organisms. Furthermore, biofilm accumulation depends on continuous C. elegans exposure to a lawn of Yersinia bacteria.  相似文献   

17.
Aging is a degenerative process characterized by a progressive deterioration of cellular components and organelles resulting in mortality. The nematode Caenorhabditis elegans has emerged as a principal model used to study the biology of aging. Because virtually every biological subsystem undergoes functional decline with increasing age, life span is the primary endpoint of interest when considering total rate of aging. In nematodes, life span is typically defined as the number of days an animal remains responsive to external stimuli. Nematodes can be propagated either in liquid media or on solid media in plates, and techniques have been developed for measuring life span under both conditions. Here we present a generalized protocol for measuring life span of nematodes maintained on solid nematode growth media and fed a diet of UV-killed bacteria. These procedures can easily be adapted to assay life span under various common conditions, including a diet consisting of live bacteria, dietary restriction, and RNA interference.Open in a separate windowClick here to view.(78M, flv)  相似文献   

18.
Female Blackface lambs expected to exhibit genetic variability for resistance to gastrointestinal nematodes, were either exposed to continuous experimental infections of Teladorsagia circumcincta or were sham-dosed to monitor phenotypic responses to infection. As a measure of parasitism and host response, worm-eggs in faeces (faecal egg count, FEC) were counted over a 3-month period and worm burdens were ascertained at post-mortem. The host response to the infection was also measured by differential counts of white blood cells, anti-T. circumcincta IgA antibody levels and body weight. Results suggest that nematode abundance (mean number of parasites per host) and prevalence (proportion of infected animals) were maximal shortly after the beginning of infection (21 days p.i.) when virtually all the infected animals were shedding worm eggs. Increasing anti-T. circumcincta IgA antibody and eosinophil concentrations were associated with a reduction in total numbers of adult worms and an increase in the frequency of early L4s. The data also suggest that genetic selection for an enhanced anti-T. circumcincta IgA response might complement selection based on a reduced FEC as a strategy to select for resistance to gastrointestinal nematodes.  相似文献   

19.
Thirty laboratory-reared mallard ducks (Anas platyrhynchos) were experimentally infected with Sphaeridiotrema globulus. Host cell-mediated immunity and wound healing in S. globulus infected ducks were evaluated by gross and histological examination. Establishment, location, and life span of S. globulus differed from previous reports of sphaeridiotremiasis in both naturally and experimentally infected waterfowl. No worms were recovered from the ceca, and worm migration occurred anterior to the ileo-cecal valve with greater dispersion (less worm crowding) at higher rates of infectivity. Parasite death and host lesion resolution were evident at days 8 to 10 postinfection (PI) in ducks fed a moderate dose (200 metacercariae, group A) with a 5% mean parasite recovery rate. Host death occurred at days 3 to 6 in ducks fed a high dose (550 metacercariae, group B) with a 16% mean parasite recovery rate. Mast cells increased significantly (P less than 0.005) in group A ducks from days 4 to 10 PI. Eosinophil proliferation was greater in group B than in group A on day 4 PI, but comparatively fewer eosinophils were identifiable in group B ducks on day 6 PI.  相似文献   

20.
Cryptosporidium parvum has been associated with outbreaks of human illness by consumption of contaminated water, fresh fruits, and vegetables. Free-living nematodes may play a role in pathogen transmission in the environment. Caenorhabditis elegans is a free-living soil nematode that has been extensively studied and serves as a good model to study possible transmission of C. parvum oocysts that may come into contact with produce before harvest. The objective of this study was to determine whether C. elegans could serve as a potential mechanical vector for transport of infectious C. parvum and Cyclospora cayetanensis in agricultural settings and whether C. elegans could ingest, excrete, and protect oocysts from desiccation. Seventy to 85% of worms ingested between 0 and 500 oocysts after 1 and 2 hr incubation with oocysts. Most of the nematodes ingested between 101 and 200 oocysts after 2 hr. Intact oocysts and empty shells were excreted by nematodes. Infectivity was determined by the neonatal assay with different treatments of worms (intact or homogenized) or oocysts or both. Adult C. elegans containing C. parvum kept in water were infective for mice. In conclusion, C. elegans adults can ingest and excrete C. parvum oocysts. Caenorhabditis elegans containing C. parvum oocysts can infect mice but does not seem to protect oocysts from extreme desiccation at 23 C incubation of a day or longer. Cyclospora oocysts were not ingested by C. elegans. The role of free-living nematodes in produce contamination needs to be further examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号