首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two perfluorinated carboxylic acids (PFCAs), pentadecafluorooctanoic acid (PDFOA) and heptadecafluorononanoic acid (HDFNA), were investigated for potential modulatory effects on the cyclooxygenase (COX) and 12-lipoxygenase (LOX) metabolisms in rat platelets. Both PDFOA and HDFNA dose-dependently inhibited the formation of a COX metabolite, 12-HHT, without any effect on that of a LOX metabolite, 12-HETE, at concentrations ranging from 10 to 100 μM. These two PFCAs up to 100 μM did not affect platelet membrane integrity, and COX-1 and -2 protein expression levels in Caco-2 cells. These results suggest that PDFOA and HDFNA have the potential to modify platelet function by inhibiting the COX pathway at activity level, but not at protein level.  相似文献   

2.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B (LTB), 6-trans-LTB4, 12-epi-6-trans-LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohydroxyeicosatetraenoic acids (i.e., 5-HETE) and omega-oxidation products (i.e., 2O -COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 microM), LTB4 but not 5-HETE formation was impaired. (1-14C)Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate, (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

3.
Anti-12(S)-hydroxyeicosatetraenoic acid (12-HETE)-antibody and anti-thromboxane B2 (TXB2)-antibody were generated and applied to the radioimmunoassay. The detection limit for 12-HETE was 16 pg. The cross-reactivities of anti-12-HETE-antibody were 4.6% for 15-HETE, 0.18% for 5-HETE and below 0.15% for leukotrienes and prostaglandins (PGs). 12-HETE and TXB2 released from guinea pig platelets were measured by radioimmunoassay. Platelet activating factor (PAF) at 10(-9) M induced the aggregation of platelets, the releases of immunoreactive-12-HETE (1.8 +/- 1.2 ng/10(8) platelets, mean +/- S.D.) and immunoreactive-TXB2 (18.5 +/- 17.3 ng/10(8) platelets). Collagen at 1 microgram/ml also evoked platelet aggregation, the releases of immunoreactive-12-HETE (2.7 +/- 1.1 ng/10(8) platelets) and immunoreactive-TXB2 (11.8 +/- 4.6 ng/10(8) platelets). By the stimulation with these compounds, TXB2 was produced in a greater amount than 12-HETE from guinea pig platelets. Although 10(-7) M and 10(-6) M U46619, a TXA2 mimetic, caused platelet aggregation, arachidonic acid metabolites were not released. These data suggest the presence of different mechanisms of platelet activation depending on each stimulus.  相似文献   

4.
Stimulation of the oxygen (O2) metabolism of isolated human neutrophilic leukocytes resulted in oxidation of hemoglobin of autologous erythrocytes without erythrocyte lysis. Hb oxidation could be accounted for by reduction of O2 to superoxide (O-2) by the neutrophils, dismutation of O-2 to yield hydrogen peroxide (H2O2), myeloperoxidase-catalyzed oxidation of chloride (Cl-) by H2O2 to yield hypochlorous acid (HOCl), the reaction of HOCl with endogenous ammonia (NH+4) to yield monochloramine ( NH2Cl ), and the oxidative attack of NH2Cl on erythrocytes. NH2Cl was detected when HOCl reacted with the NH+4 and other substances released into the medium by neutrophils. The amount of NH+4 released was sufficient to form the amount of NH2Cl required for the observed Hb oxidation. Oxidation was increased by adding myeloperoxidase or NH+4 to increase NH2Cl formation. Due to the volatility of NH2Cl , Hb was oxidized when neutrophils and erythrocytes were incubated separately in a closed container. Oxidation was decreased by adding catalase to eliminate H2O2, dithiothreitol to reduce HOCl and NH2Cl , or taurine to react with HOCl or NH2Cl to yield taurine monochloramine . NH2Cl was up to 50 times more effective than H2O2, HOCl, or taurine monochloramine as an oxidant for erythrocyte Hb, whereas HOCl was up to 10 times more effective than NH2Cl as a lytic agent. NH2Cl contributes to oxidation of erythrocyte components by stimulated neutrophils and may contribute to other forms of neutrophil oxidative cytotoxicity.  相似文献   

5.
Involvement of arachidonic acid cyclooxygenase (COX) and lipoxygenase (LOX) metabolites in platelet aggregation and coagulation induced by two varieties of cancer cells of murine transplantable tumors was studied. A lung alveolar carcinoma (LAC) and a fibrosarcoma (FS), induced platelet aggregation and plasma coagulation (P<0.05). Pretreatment of both tumor lines with a COX inhibitor did not block the tumor cell induced platelet aggregation (TCIPA). COX [12(S)-HTT] and LOX [12(S)-HETE], metabolites of washed platelets (WP), alone or co-incubated with LAC or FS cells, were analyzed. We observed higher 12(S)-HETE release with respect to 12(S)HHT when WP were co-incubated with LAC cells. With both neoplastic cell (NC) lines prothrombin time (PT) was shortened. Pretreatment of NC with iodoacetic acid, soybean trypsin inhibitor or Factor X-deficient plasma increased the PT. These results indicate that AA metabolites play a role on the procoagulation and platelet aggregation induced by mesenchymal and epithelial murine cancers.  相似文献   

6.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B4(LTB4). 6- -LTB4, 12- -6- -LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohyroxyeicosatetraenoic acids (i.e., 5-HETE) and w-oxidation products (i.e., 20-COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 uM), LTB4 but 5-HETE formation was impaired. (1-14C) Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate. (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

7.
The effects of a single oral administration of acetylsalicylic acid (500 mg), indomethacin (50 mg) and piroxicam (40 mg) to healthy volunteers on functional and biochemical parameters of platelets, polymorphonuclear (PMN) and mononuclear (MNL) leukocytes were evaluated. Blood was collected before and two hours after the drug intake and blood cells separated according to conventional techniques. The considered drugs almost completely suppressed the aggregation of platelets, whereas they did not affect either PMN and MNL aggregation. Superoxide anion generation by leukocytes was (PMN), or no effect (MNL) was observed after piroxicam and indomethacin respectively. The formation of arachidonate metabolites via the 5-lipoxygenase pathway by PMN and MNL challenged with 10 microM A23187 was unchanged following aspirin and indomethacin. In this respect a selective increase of 5-HETE and LTC4 synthesis by MNL only was detected after piroxicam administration. The three drugs similarly reduced TXB2 synthesis by platelets and PMN (-80% for aspirin and indomethacin, and -40% for piroxicam). As far as MNL is concerned, aspirin inhibited this metabolite by 80%, while indomethacin reduced it by 40% only. In contrast piroxicam increased TXB2 synthesis by stimulated MNL. It can be concluded that the considered antiinflammatory drugs 1) differently affect the cyclooxygenase enzyme in platelets and leukocytes; 2) at variance with the situation in platelets, the inhibition of thromboxane formation by leukocytes is not related to modifications of cellular function; 3) the formation of arachidonate metabolites via the 5-lipoxygenase pathway is affected by piroxicam only.  相似文献   

8.
The effect of tert-butyl hydroperoxide (t-BOOH) on the formation of thromboxane (TX) B2, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) from exogenous arachidonic acid (AA) in washed rabbit platelets was examined. t-BOOH enhanced TXB2 and HHT formation at concentrations of 8 microM and below, and at 50 microM it inhibited the formation, suggesting that platelet cyclooxygenase activity can be enhanced or inhibited by t-BOOH depending on the concentration. t-BOOH inhibited 12-HETE production in a dose-dependent manner. When the platelets were incubated with 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE) instead of AA, t-BOOH failed to inhibit the conversion of 12-HPETE to 12-HETE, indicating that the inhibition of 12-HETE formation by t-BOOH occurs at the lipoxygenase step. Studies utilizing indomethacin (a selective cyclooxygenase inhibitor) and desferrioxamine (an iron-chelating agent) revealed that the inhibitory effect of t-BOOH on the lipoxygenase is not mediated through the activation of the cyclooxygenase and that this effect of t-BOOH is due to the hydroperoxy moiety. These results suggest that hydroperoxides play an important role in the control of platelet cyclooxygenase and lipoxygenase activities.  相似文献   

9.
Analysis of arachidonic acid metabolites in human platelets by reverse-phase HPLC with radioactivity and UV detection revealed, besides Thromboxane B2 (TXB2), 12-hydroxy-heptadecatrienoic acid (HHT) and 12-hydroxy-eicosatetraenoic acid (12-HETE) previously described, two peaks of unidentified material absorbing at 280 nm. This material was purified by straight-phase HPLC and characterized by UV spectroscopy and gas chromatography-mass spectrometry. Three carbonyl compounds were identified: 12-keto-5,8,10,14-eicosatetraenoic acid and two geometric isomers of 12-oxo-5,8,10-dodecatrienoic acid. In a 5 min incubation at 37 degrees C in the presence of 9 microM arachidonic acid, the yield was of 0.5 to 1% of added arachidonic acid for the ketonic compound and of 4 to 7% for the sum of the two isomeric fatty acid aldehydes in comparison to 10 to 13% and 25 to 28% for TXB2 and 12-HETE, respectively. Because the three compounds carry a carbonyl group at position 12, their relationship with the 12-lipoxygenase pathway was investigated. It was found that the three compounds were formed when 12-hydroperoxy-eicosatetraenoic acid (12-HPETE) was incubated with intact or heat denaturated platelets or hemoproteins, strongly suggesting that these carbonyl compounds are products of a heme-catalysed transformation of 12-HPETE.  相似文献   

10.
12-Hydroxyeicosatetraenoic acid (12-HETE), a lipoxygenase product released by activated platelets and macrophages, reduced prostacyclin (PGI2) formation in bovine aortic endothelial cultures by as much as 70%. Maximal inhibition required 1 to 2 h to occur and after 2 hr, a concentration of 1 microM 12-HETE produced 80% of the maximum inhibitory effect. 5-HETE and 15-HETE also inhibited PGI2 formation. The inhibition was not specific for PGI2; 12-HETE reduced the formation of all of the radioactive eicosanoids synthesized from [1-14C]arachidonic acid by human umbilical vein endothelial cultures. Inhibition occurred in the human cultures when PGI2 formation was elicited with arachidonic acid, ionophore A23187 or thrombin. These findings suggest that prolonged exposure to HETEs may compromise the antithrombotic and vasodilator properties of the endothelium by reducing its capacity to produce eicosanoids, including PGI2.  相似文献   

11.
Soluble elastin, prepared from insoluble elastin by treatment with oxalic acid or elastase, was found to inhibit the formation of thromboxane B2 both from [1-14C]arachidonic acid added to washed platelets and from [1-14C]arachidonic acid in prelabeled platelets on stimulation with thrombin. In both systems, the formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) was accelerated. Oxalic acid-treated soluble elastin st 1 and 10 mg/ml inhibited the formation of thromboxane B2 from exogenously supplied arachidonic acid 21 and 59%, respectively, and the formation of thromboxane B2 in prelabeled platelets stimulated by thrombin 44 and 94%, respectively. These concentrations of elastin increased the formation of 12-HETE from exogenously supplied arachidonic acid about 3.4- and 7.3-times, respectively. Almost all the added arachidonic acid was converted to metabolites. In prelabeled platelets, soluble elastin at 1 and 10 mg/ml increased the formation of 12-HETE stimulated by thrombin about 1.3- and 2.8-times, respectively, and inhibited the thrombin-induced total productions of thromboxane B2 (12-hydroxy-5,8,10-heptadecatrienoic acid (12-HETE) and free arachidonic acid by 26 and 25%, respectively. Elastase-treated digested elastin also inhibited the formation of thromboxane B2 and stimulated the formation of 12-HETE in prelabeled platelets stimulated by thrombin. This inhibitory action of elastin was not replaced by desmosine. The level of cAMP in platelets was not affected by soluble elastin. Soluble elastin was also found to inhibit platelet aggregation induced by thrombin. However, the inhibitory action of soluble elastin on platelet aggregation cannot be explained by inhibition of thromboxane B2 formation by the elastin.  相似文献   

12.
Stimulation of platelets with collagen results in the mobilization of arachidonic acid (AA) from phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). In this study the effect of aspirin, indomethacin, BW755C and prostaglandin H2 (PGH2) on labelled AA release in response to varied concentrations of collagen was investigated. Our results indicate that aspirin (0.56 mM) and indomethacin (5.6 microM) not only inhibited the collagen-mediated formation of cyclo-oxygenase metabolites, but also caused a significant reduction in the accumulation of free labelled AA and 12-hydroxyeicosatetraenoic acid (12-HETE) (21-64%). Aspirin and indomethacin also inhibited the release of [3H]AA from PC (37-75%) and PI (33-63%). The inhibition of AA release caused by aspirin was reversed partially by PGH2 (1 microM). In contrast, a smaller/no inhibition of collagen-stimulated labelled AA and 12-HETE accumulation (0-11%) and of collagen-stimulated AA loss from PC and PI was observed in the presence of BW755C. The results obtained in the presence of aspirin, indomethacin and BW755C at lower concentrations of collagen further demonstrate that AA release from PI (45-61% inhibition at 10 micrograms of collagen), but not from PC, was affected by the inhibition of cyclo-oxygenase. The results obtained on the effect of PGH2 further support that deacylation of phospholipids occurs independently of cyclo-oxygenase metabolites, particularly at higher concentrations of collagen. These results also demonstrate that aspirin and indomethacin, but not BW755C, cause a direct inhibition of collagen-induced [3H]AA liberation from PC as well as from PI. We also conclude that the diacylglycerol lipase pathway is a minor, but important, route for AA release from PI in collagen-stimulated human platelets. The mechanisms underlying the regulation of AA release by collagen in the absence of cyclo-oxygenase metabolites are not clear.  相似文献   

13.
Arachidonic acid (AA) metabolism in the non-pregnant sheep uterus was studied in vitro using conventional chromatographic and HPLC techniques. High expression of both lipoxygenase (LOX) as well as cyclooxygenase (COX) enzymes and their activities was found in the uterine tissues. On incubation of uterine enymes with AA, the LOX products formed were identified as 5-hydroperoxyeicosatetraenoic acid (5-HPETE), 12- and 15-hydroxyeicosatetraenoic acids (12- and 15-HETEs), based on their separation on TLC and HPLC. By employing differential salt precipitation techniques, the LOXs generating products 5-HPETE (5-LOX), 12-HETE and 15-HETE (12- and 15-dual LOX) were isolated. Based on their analysis on TLC, the COX products formed were identified as prostaglandins - PGF2alpha and prostacyclin derivative 6-keto PGF1alpha. The study forms the first report on the comprehensive analysis on the metabolism of AA in sheep uterus in vitro via the LOX and COX pathways.  相似文献   

14.
Platelets metabolize 7,10,13,16,19-docosapentaenoic acid (22:5(n-3] into 11-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-docosapentaenoic acid via an indomethacin-insensitive pathway. Time-dependent studies with 20 microM substrate show a lag in the synthesis of both the 11- and 14-isomers which was not observed for the synthesis of thromboxane B2 (TXB2), 5,8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) from arachidonic acid. When platelets were incubated with increasing concentrations of 22:5(n-3), the 11- and 14-isomers were not produced until the substrate concentration exceeded 5 microM unless arachidonic acid was also added to the incubations. The stimulatory effect of arachidonic acid was not blocked by indomethacin thus suggesting that 12-hydroperoxyeicosatetraenoic acid or 12-HETE derived from arachidonic acid may activate the platelet lipoxygenase(s) which metabolize 22:5(n-3). Incubations containing 20 microM 22:5(n-3) and increasing levels of [1-14C]arachidonic acid show that the (n-3) acid inhibits the synthesis of both 5,8,10-heptadecatrienoic acid and TXB2 from arachidonic acid. At the same time, 12-HETE synthesis increased due to substrate shunting to the lipoxygenase pathway.  相似文献   

15.
We have recently demonstrated a novel cytotoxic effect of human platelets against Toxoplasma gondii and a role for thromboxane (TX) in this process (Yong et al., 1991). We now report on the spectrum of lipid mediators released by human platelets after interaction with T. gondii. In addition to TXB2, human platelets after incubation with T. gondii for 90 min released 12-hydroxyheptadecatrienoic acid (12-HHT), 12-hydroxyeicosatetraenoic acid (12-HETE), and an unidentified peak (UVmax 234 nm) as determined by reverse-phase high-performance liquid chromatography. Thermospray-liquid chromatography/mass spectrometry analysis and straight-phase HPLC identified the unknown peak as a mixture of 13-hydroxyoctadecadienoic acid (HODE) and 9-HODE. Radiolabeling studies with [14C]linoleic acid indicated that the platelets were the cellular source of the octadecanoids with 13-HODE (87.7%) greater than 9-HODE (12.3%). Inhibitor studies with indomethacin indicated that 13-HODE was a lipoxygenase product and 9-HODE was a cyclooxygenase product of linoleic acid. Thus, Toxoplasma-stimulated platelets release oxygenated products of both arachidonic acid and linoleic acid which may be important in the host response to T. gondii infection.  相似文献   

16.
The in vitro effect of trichosanic acid (TCA; C18:3, omega-5), a major component of Trichosanthes japonica, on platelet aggregation and arachidonic acid (AA) metabolism in human platelets was studied. TCA dose-dependently suppressed platelet aggregation of platelet rich plasma and washed platelets. TCA decreased collagen (50 micrograms/ml)-stimulated production of thromboxane B2 (TXB2) and 12-hydroxyhepta-decatrienoic acid (HHT) in a dose-dependent manner, while that of 12-hydroxyeicosatetraenoic acid (12-HETE) was rather enhanced. The conversion of exogenously added [14C]AA to [14C]TXB2 and [14C]HHT in washed platelets was dose-dependently reduced by the addition of TCA, while that to [14C]12-HETE was increased. Similar observations were obtained when linolenic acid (LNA; C18:3, omega-3) was used. These results suggest that TCA may decrease TXA2 formation in platelets, probably due to the inhibition of cyclooxygenase pathway, and thereby reduce platelet aggregation.  相似文献   

17.
Taurine is present in high concentrations in neutrophils, and when the cells are stimulated taurine can react with hypochlorous acid (HOCl) to form taurine-chloramine (Tau-Cl). This compound retains oxidant activity and can affect the neutrophil itself or surrounding tissue cells. We have investigated the effects of Tau-Cl on MAPK signaling in human umbilical vein endothelial cells (HUVEC). Tau-Cl caused no loss in intracellular glutathione or inactivation of the thiol-sensitive enzyme glyceraldehyde-3-phosphate dehydrogenase, indicating that it had not entered the cells. However, stimulation of HUVEC with Tau-Cl (20-100 microM) induced the rapid activation of ERK within 10 min. This activation was abolished by inhibition of MEK by U0126, indicating that it was not because of direct oxidation of ERK. No activation of p38 was detected. These results suggest that Tau-Cl reacts with a cell membrane target that results in intracellular ERK activation. Tau-Cl over the same concentration range and time scale stimulated epidermal growth factor (EGF) receptor tyrosine phosphorylation in A431 cells and HUVEC. The EGF receptor inhibitor PD158780 significantly attenuated Tau-Cl-induced phosphorylation of both the EGF receptor and ERK. This implicates the EGF receptor in the upstream activation of ERK. The Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine had no effect on Tau-Cl-induced EGF receptor or ERK activation. We propose that Tau-Cl acts on an oxidant-sensitive target on the cell surface, this being either the EGF receptor itself or another target that can interact with the EGF receptor, with consequential activation of ERK.  相似文献   

18.
Summary.  Taurine (Tau), a dominant free amino acid present in neutrophil cytoplasm, serves as a scavenger for hypochlorous acid (HOCl) released during these cells activation. The resulting taurine chloramine (Tau-Cl) exerts potent anti-inflammatory properties. In the present study we tested the hypothesis that the formation of Tau-Cl is impaired in neutrophils isolated from rheumatoid arthritis (RA) patients. The inhibition of zymosan-triggered chemiluminescence in the presence of exogenous Tau was used for indirect measurement of Tau-Cl generation. The chemiluminescence of neutrophils isolated from peripheral blood (PB) of healthy volunteers and RA patients was inhibited by Tau with similar potency. By contrast, synovial fluid (SF) neutrophils of these patients were significantly less sensitive for Tau-mediated inhibition. Therefore, our data indicate impaired generation of Tau-Cl in neutrophils isolated from SF of RA patients. Received November 29, 2001 Accepted January 9, 2002 Published online August 30, 2002 Acknowledgements This work was supported by grants from the State Committee for Scientific Research of Poland (No. P05A 104 19) and the Institute of Rheumatology. The Institute of Rheumatology is supported by a core grant from the State Committee for Scientific Research of Poland. Authors' address: Ewa Kontny, Ph.D, Department of Pathophysiology and Immunology, Institute of Rheumatology, Spartanska 1, 02-637 Warsaw, Poland, E-mail: zpatiir@warman.com.pl Abbreviations: Tau, taurine; Tau-Cl, taurine chloramine; PB, peripheral blood; SF, synovial fluid; RA, rheumatoid arthritis  相似文献   

19.
The effect of 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE), a major lipoxygenase product of endothelial cell linoleic acid metabolism on thrombin-induced platelet thromboxane B2 (TxB2), and 12-hydroxyeico-satetraenoic acid (12-HETE) production was evaluated. 13-HODE inhibited thrombin-induced TxB2 production in human platelets in a concentration-dependent manner. At concentrations of 10 and 30 microM, 13-HODE inhibited TxB2 production by 28 +/- 8% (1SE, n = 5; P less than 0.05) and 48 +/- 6% (P less than 0.01) respectively. 13-HODE (30 microM) also inhibited the production of platelet hydroxyheptadecatrienoic acid (38 +/- 5%, P less than 0.01). A concomitant stimulation of 12-HETE production by 13-HODE was observed (25 +/- 5% and 49 +/- 22% over control values at 10 and 30 microM respectively, P less than 0.01). Our results demonstrate a differential effect of 13-HODE on thrombin stimulated platelet cyclooxygenase and lipoxygenase metabolites.  相似文献   

20.
Dietary fats, which increase the risk of prostate cancer, stimulate release of intestinal neurotensin (NT), a growth-promoting peptide that enhances the formation of arachidonic acid metabolites in animal blood. This led us to use PC3 cells to examine the involvement of lipoxygenase (LOX) and cyclooxygenase (COX) in the growth effects of NT, including activation of EGF receptor (EGFR) and downstream kinases (ERK, AKT), and stimulation of DNA synthesis. NT and EGF enhanced [3H]-AA release, which was diminished by inhibitors of PLA2 (quinacrine), EGFR (AG1478) and MEK (U0126). NT and EGF phosphorylated EGFR, ERK and AKT, and stimulated DNA synthesis. These effects were diminished by PLA2 inhibitor (quinacrine), general LOX inhibitors (NDGA, ETYA), 5-LOX inhibitors (Rev 5901, AA861), 12-LOX inhibitor (baicalein) and FLAP inhibitor (MK886), while COX inhibitor (indomethacin) was without effect. Cells treated with NT and EGF showed an increase in 5-HETE levels by HPLC. PKC inhibitor (bisindolylmaleimide) blocked the stimulatory effects of NT, EGF and 5-HETE on DNA synthesis. We propose that 5-LOX activity is required for NT to stimulate growth via EGFR and its downstream kinases. The mechanism may involve an effect of 5-HETE on PKC, which is known to facilitate MEK-ERK activation. NT may enhance 5-HETE formation by Ca2+-mediated and ERK-mediated activation of DAG lipase and cPLA2. NT also upregulates cPLA2 and 5-LOX protein expression. Thus, the growth effects of NT and EGF involve a feed-forward system that requires cooperative interactions of the 5-LOX, ERK and AKT pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号