首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Cytokines released at sites of inflammation and infection can alter the normal processes of cartilage turnover, resulting in pathologic destruction or formation. Interleukin (IL)-1beta plays a central role in the pathophysiology of cartilage damage and degradation in arthritis. In the present study, we examined the effect of IL-1beta on the expression of IL-1beta, IL-6, IL-8, IL-11, tumor necrosis factor-alpha (TNF-alpha), and their receptors in human chondrocytes. The cells were cultured either with or without 100 U/ml of IL-1beta for up to 28 days. The level of expression of the cytokines and their receptors was estimated by determining mRNA levels using real-time PCR or by determining protein levels using ELISA. The expression of IL-1beta, IL-8, and TNF-alpha markedly increased in the presence of IL-1beta after day 14 of culture. The expression of IL-6 and IL-11 increased greatly in the presence of IL-1beta on day 1 and after day 14 of culture. The expression of IL-1beta, IL-8, IL-11, and TNF-alpha receptors significantly decreased in the presence of IL-1beta after day 14 of culture, whereas the expression of IL-6 receptor significantly increased. The expression of these cytokines, except for IL-6, decreased with the addition of human IL-1 receptor antagonist. These results suggest that IL-1beta promotes the resolution system of cartilage matrix turnover through an increase in inflammatory cytokine production by chondrocytes and that it also may promote the autocrine action of IL-6 through an increase in IL-6 receptor expression in the cells.  相似文献   

3.
Interleukin-33 (IL-33) receptors are composed of ST2 (also known as IL-1R4), a ligand binding chain, and IL-1 receptor accessory protein (IL-1RAcP, also known as IL-1R3), a signal transducing chain. IL-1R3 is a common receptor for IL-1α, and IL-1β, IL-33, and three IL-36 isoforms. A549 human lung epithelial cells are highly sensitive to IL-1α and IL-1β but not respond to IL-33. The lack of responsiveness to IL-33 is due to ST2 expression. ST2 was stably transfected into A549 cells to reconstitute its activity. RT-PCR and FACS analysis confirmed ST2 expression on the cell surface of A549/ST2 cells. Upon IL-33 stimulation, A549/ST2 cells induced IL-8 and IL-6 production in a dose dependent manner while A549/mock cells remained unresponsive. There was no difference in IL-1α and IL-1β activity in A549/ST2 cells compared to A549/mock cells despite the fact that IL-33 shares IL-1R3 with IL-1α/β. IL-33 activated inflammatory signaling molecules in a time- and dose-dependent manner. Anti-ST2 antibody and soluble recombinant ST2-Fc abolished IL-33-induced IL-6 and IL-8 production in A549/ST2 cells but the IL-1 receptor antagonist failed to block IL-33-induced cytokines. This result demonstrates for the first time the reconstitution of ST2 in A549 human lung epithelial cell line and verified its function in IL-33-mediated cytokine production and signal transduction.  相似文献   

4.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

5.
Mononuclear cells from atopic blood donors showed increased IL-3 steady state mRNA levels. This finding complemented our earlier observations that cells from atopics also showed increased IL-4 but decreased IFN-gamma, IL-1 beta and IL-6 mRNA levels. Therefore, we investigated the effect of human recombinant IL-4 on cytokines mRNA levels in mononuclear cells from normals and atopics. In the presence of IL-4 steady state levels of IL-1 beta and IL-6 mRNA were decreased even if cells were co-stimulated with polyclonal activators such as PMA, PWM or PHA. No influence of IL-4 on granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3 or IFN-gamma mRNA levels was observed with the exception of a decreased IFN-gamma mRNA level in PWM stimulated cells.  相似文献   

6.
We investigated the response of purified and cloned human thymic epithelial cells (TEC) to IL-1, IL-4, and IFN-gamma stimulation in vitro. IL-1 alpha strongly up-regulated the production of granulocyte-macrophage CSF (GM-CSF), granulocyte CSF (G-CSF), IL-6, and IL-8, as measured by specific immunoenzymetric assays and by increased steady state mRNA levels. IL-4 or IFN-gamma did not induce these cytokines in TEC but in a sustained and dose-dependent manner down-regulated the IL-1-induced GM-CSF protein and mRNA levels. Only IFN-gamma, and not IL-4, suppressed the IL-1-induced G-CSF and IL-8 production, as shown at both the protein and mRNA levels. The inhibition was dose dependent, sustained for at least 96 h, and more pronounced for G-CSF than for IL-8. In contrast, both IL-4 and IFN-gamma enhanced the IL-1-induced IL-6 production. IL-4 and IFN-gamma had additive effects to increase IL-6 secretion and to more completely suppress the IL-1-induced GM-CSF. Analyses of cell surface molecules showed that intercellular adhesion molecule 1 (ICAM-1) expression on TEC was increased by IL-1 or IFN-gamma. IL-4 slightly down-regulated constitutive ICAM-1 levels but did not significantly modify the levels of expression induced by either IL-1 or IFN-gamma. MHC class II expression was induced by IFN-gamma but not by IL-1 or IL-4. The combination of IL-1 and IL-4 with IFN-gamma did not alter the levels of class II MHC Ag induced by IFN-gamma. In conclusion, TEC cytokine production and cell surface molecule expression are differentially regulated via a complex cytokine network. Our data suggest that developing T cells provide, in part, the signals controlling the function of their supporting stroma.  相似文献   

7.
8.
9.
10.
目的:通过研究尿酸性肾病动物模型中白介素-1(IL-1)beta和白介素-1受体相关激酶4(IRAK-4) 表达的意义,了解IL-1beta信号 通路在尿酸性肾病中的作用。方法:Wistar 大鼠54 只随机分为高尿酸血症组30 只、正常组24 只,制备尿酸性肾病大鼠模型,检测 尿酸(UA)、尿素氮(BUN)、肌酐(CR)及肌酐清除率(Ccr)、24 h尿微量白蛋白(mA1b);取肾脏组织行HE 染色,观察形态学变化;免疫 组化测定IL-1beta的表达;荧光定量PCR 检测IRAK-4 mRNA的水平。结果:高尿酸组2、4、6 周时IL-1beta的表达均增加,免疫组化评 分(IHS)均明显升高(P<0.01);高尿酸血症组较正常组IRAK-4 mRNA 在2、4、6 周时均出现表达上调,4~6 周IRAK-4 mRNA表达 明显增加,与正常组比较有显著性差异(P<0.01)。结论:IL-1beta、IRAK-4 参与了尿酸性肾病炎症反应的过程,可能为尿酸性肾病治疗 提供新的可能。  相似文献   

11.
AIMS: To determine whether granulocyte macrophage-colony stimulating factor (GM-CSF) production by neuronal precursor (NT2) cells can be regulated by IL-1beta and TNF-alpha. BACKGROUND: We have previously demonstrated GM-CSF expression by neurons of the developing human brain, as well as by NT2 cells. IL-1beta and TNF-alpha upregulate GM-CSF production in glial cells, but GM-CSF regulation in neurons is as yet undefined. We hypothesized that IL-1beta and TNF-alpha would increase GM-CSF mRNA and protein production in NT2 cells. METHODS: The effect of IL-1beta and TNF-alpha on GM-CSF production was assessed by dose response (0 to 2,000 U/ml), and time course (0 to 48 hours incubation) experiments. GM-CSF mRNA and protein production were assessed by quantitative RT-PCR and by ELISA. The effect of these cytokines on cell turnover was determined by BrdU incorporation. RESULTS: IL-1beta increased GM-CSF mRNA and protein expression by NT2 cells. This effect was time and dose dependent, and the effective dose ranging from (20-200 U/ml). TNF-alpha increased GM-CSF mRNA expression to a lesser extent than did IL-1beta (maximal stimulation at 200 U/ml), and a minimal increase in net protein accumulation was noted. Neither cytokine increased NT2 cell turnover. CONCLUSIONS: IL-1beta and TNF-alpha both increase GM-CSF mRNA expression by NT2 cells, but only IL-1beta increases net GM-CSF protein accumulation.  相似文献   

12.
Lipoxins are a novel class of endogenous eicosanoid mediators that potently inhibit inflammatory events by signaling via specific receptors expressed on phagocytic cells. Animal models have shown that lipoxin A4 (LXA4) down-regulates inflammation in vivo. Here we demonstrate, for the first time, the expression of LXA4 receptors, and their up-regulation by IL-1 beta, in normal human synovial fibroblasts (SF). We examined whether exogenous LXA4 abrogated IL-1 beta stimulation of SF in vitro. IL-1 beta induced the synthesis of IL-6, IL-8, and matrix metalloproteinases (MMP)-1 and -3. At nanomolar concentrations, LXA4 inhibited these IL-1 beta responses with reduction of IL-6 and IL-8 synthesis, by 45 +/- 7% and 75 +/- 11%, respectively, and prevented IL-1 beta-induced MMP-3 synthesis without significantly affecting MMP-1 levels. Furthermore, LXA4 induced a 2-fold increase of tissue inhibitor of metalloproteinase (TIMP)-1 and a approximately 3-fold increase of TIMP-2 protein levels. LXA4 inhibitory responses were dose dependent and were abrogated by pretreatment with LXA4 receptor antiserum. LXA4-induced changes of IL-6 and TIMP were accompanied by parallel changes in mRNA levels. These results indicate that LXA4 in activated SF inhibits the synthesis of inflammatory cytokines and MMP and stimulates TIMP production in vitro. These findings suggest that LXA4 may be involved in a negative feedback loop opposing inflammatory cytokine-induced activation of SF.  相似文献   

13.
This study analyzed the mRNA expression of tumor necrosis factor (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6) in mice experimentally infected with T. gondii undergoing honey treatment. Thirty male mice were divided in groups: pre-treatment/infected (1), infected/non-treated (2), infected/treated (3), non-infected/treated (4) and control (5). Honey was applied for groups 1, 3, 4 by gavage and the mice in group 1–3 were infected by T. gondii tissue cysts. The parasite load and the level of mRNA expression of the aforementioned cytokines in the brains of mice were assessed by qPCR. The mean number of T. gondii tachyzoite in 1 mg brain tissue was 32, 73 and 59 in groups one, two and three, respectively. The mRNA expression of TNF-α increased in group 1, 2 and 3, about 49.1%, 307.3% and 63.2%, respectively but it was down-regulated by 53% in group 4. The mRNA expression of IL-1β and IL-6 was also up-regulated in all groups except group 2. The mRNA level of TNF-α was reduced by 2.7-fold and 1.18-fold in pre-treated/infected (group 1) and infected/treated (group 3) compared with infected/non-treated (group 2). The mRNA level of IL-1β and IL-6 were increased in these groups. The current study demonstrated that honey can stimulate or suppress the mRNA expression of some pro-inflammatory cytokines in mice brains. Furthermore, honey suppresses the TNF-α mRNA expression in the presence of T. gondii infection but it stimulates the IL-1β and IL-6 mRNA expression. Treatment of the mice with honey reduces parasite multiplication in the brain.  相似文献   

14.
15.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

16.
We evaluated the expression of IL-1 system by normal human myogenic cells during in vitro myogenesis and the effect of exogenous IL-1beta. Expression of IL-1alpha and beta, IL-1 receptor antagonist (IL-1Ra), IL-1RI and II, IL-1R accessory protein (IL-1RAcP) and IL-1beta converting enzyme (ICE) was studied by immunocytochemistry, immunoblotting, ELISA and RT - PCR. Cell proliferation was evaluated by [3H]thymidine incorporation, cell fusion by flow cytometry and cell death by in situ end-labelling. Human normal myogenic cells constitutively produced IL-1beta and ICE, with a maximum expression at time of cell fusion. IL-1Rs and IL-1RAcP expression reached a peak at time of commitment to fusion. Myogenic cells produced small amounts of IL-1Ra at latest stages of culture, and only the intracellular isoform. Exposure of cultures to exogenous IL-1beta (1-5 ng/ml) induced myogenic cell apoptosis, without effect on cell proliferation or fusion. IL-1beta-induced cell death was associated with morphological changes including spreading appearance of cells and alteration of cell alignment. We conclude that (1) human myogenic cells constitutively produce IL-1beta; (2) IL-1 system components are differentially expressed during in vitro myogenesis; (3) IL-1 system participates to the coordinated regulation of cell density during normal myogenesis, which could serve to control the muscle mass in vivo.  相似文献   

17.
18.
Among the major cytokines present in inflammatory lesions interleukin-1 (IL-1), tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) share many biological activities. Since IL-1 alpha, IL-1 beta and TNF alpha have been previously demonstrated to play an important role in connective tissue destruction by stimulating the production of prostaglandin E2 (PGE2) and collagenase, these functions were investigated in the presence or absence of natural human IL-6 (nhIL-6) or recombinant human IL-6 (rhIL-6). IL-6 was found 1 degree to stimulate immunoglobulin A production by the CESS B cell line up to 19 fold without being affected by the presence of IL-1 beta and 2 degrees to stimulate murine thymocytes proliferation up to 2-4 fold, with an increase up to 60-fold in costimulation with either IL-1 alpha or beta. IL-6 alone, even at very high concentrations (up to 200 U/ml and 50 ng/ml), did not induce PGE2 production by fibroblasts and synovial cells. However, IL-1 alpha or beta induced PGE2 production by human dermal fibroblasts and by human synovial cells was inhibited (in 5/8 experiments) up to 62% by addition of IL-6. On the contrary in 2/4 experiments TNF alpha-induced PGE2 production was increased (approximately 2 fold) by the addition of IL-6. IL-1 and TNF alpha-induced collagenase production in synovial cells remained unchanged in the presence of IL-6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We compared the production of IL-1alpha, IL-1beta, and of IL-1Ra isoforms by cultured human dermal (HDF) and synovial fibroblasts (HSF) in response to IL-1alpha, TNF-alpha, or direct T cell membrane contact. IL-1Ra was constitutively present in the cell lysates of cultured HDF and its synthesis increased in stimulated cells, whereas IL-1Ra was present in low amounts in the supernatants. Secreted IL-1Ra (sIL-1Ra) and intracellular IL-1Ra type 1 (icIL-1Ra1) mRNA levels followed the same pattern. In stimulated HDF, IL-1alpha and IL-1beta were increased intracellularly but remained undetectable in the supernatants. In HSF, IL-1Ra levels increased in both cell lysates and supernatants upon stimulation. IL-1beta was only present in HSF cell lysates after stimulation, whereas IL-1alpha was undetectable. Both sIL-1Ra and icIL-1Ra1 mRNAs were detected in stimulated HSF. icIL-1Ra1 was the predominant intracellular isoform in both cell types. In conclusion, stimulated HDF produce high amounts of intracellular IL-1Ra, IL-1alpha, and IL-1beta. In contrast, HSF synthesized both intracellular and secreted IL-1Ra, whereas IL-1beta was present only in cell lysates. The presence of high amounts of icIL-1Ra1 and intracellular IL-1alpha in HDF suggests that these cytokines may carry out important function inside cells.  相似文献   

20.
Sengupta J  Dhawan L  Ghosh D 《Cytokine》2003,24(6):277-285
Blastocyst implantation and placentation involve localized inflammatory type of responses at and around the site of nidation. In the present study, the likely involvement of inflammatory cytokines, namely, leukemia inhibitory factor (LIF), interleukins 1 alpha and 1 beta (IL-1alpha and IL-1beta) and IL-6 at the primary implantation site of the rhesus monkey was examined immunocytochemically during lacunar (n=6) and villous (n=8) stages of gestation. Trophoblast cells and extraembryonic mesenchymal cells were immunopositive for LIF and IL-1alpha. The distribution of IL-1beta and IL-6 in trophoblast cells was low in lacunar stage samples, however, a higher degree of immunopositivity for IL-6 was observed in villous stage samples. Decidual cells were immunopositive for all the cytokines studied. In lacunar stage samples, plaque cells adjacent to implanted nidus were immunopositive for all the cytokines examined, and the degree of their immunoprecipitation increased, except that of IL-1beta, during the villous stage. Luminal and glandular epithelial cells were immunopositive for LIF, IL-1alpha, IL-1beta and IL-6 in lacunar and in villous stage samples. LIF immunopositivity was detected in endothelial cells of blood vessels within and below chorionic plate and cytotrophoblast shell, while vascular smooth muscle cells were positive for all the cytokines studied. The temporo-spatial characteristics of LIF, IL-1alpha, IL-1beta and IL-6 protein expressions in primary implantation sites of the rhesus monkey suggest that these pro-inflammatory cytokines play specific roles in regulating trophoblast cell proliferation, differentiation, invasion and associated maternal tissue remodelling during early gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号