首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The middle and high molecular weight members of the neurofilament triplet, NF-M and NF-H, undergo extensive posttranslational polyphosphorylation, a process requiring 24 h or more for completion. We have investigated ways of perturbing this process in intact cells and have found that phosphorylation of newly synthesized NF-M in cultured chick sensory neurons is inhibited by Li+. [35S]Methionine pulse-chase experiments were carried out with pure neuronal cultures, and the phosphorylation of newly synthesized NF-M was monitored by following the accompanying change, with chase time, in apparent size and charge of the polypeptide. Addition of LiCl to the medium inhibited this mobility shift in a dose-dependent manner over concentrations between 2 and 25 mM. Incorporation of 32P into NF-M, as well as NF-H, was also inhibited, whereas incorporation into the low molecular weight neurofilament protein, beta-tubulin, and total protein was unaffected. Protein synthesis was not altered. Exposure to 25 mM LiCl for up to 72 h was not toxic, and the inhibition of NF-M phosphorylation was completely reversible. When 25 mM Li+ was added after NF-M had become partially phosphorylated, further progression was blocked, but there was no net dephosphorylation or degradation of NF-M. Additional experiments suggest that this action of Li+ is probably not due to effects on second messenger levels or to effects on tubulin metabolism and assembly state presented in our accompanying article, but rather to interference by Li+ itself, with the phosphorylation of NF-M and NF-H by specific neurofilament kinase(s).  相似文献   

2.
Paramecia respond to environmental stimuli by altering swimming behavior to disperse from or accumulate in the vicinity of the stimulus. We have found, using the T-maze assay, that treatment of paramecia with LiCl in a time- and concentration-dependent manner modifies the normal response to folate, acetate, and lactate from attraction to no response or even repulsion. Responses to NH4Cl were unaffected and to cAMP were variably affected by LiCl. Cells incubated in the presence of K+, or both Na+ and K+, but not Na+ alone reliably recovered attraction to folate. Treatment of cells with 4 mM LiCl for 1 h dramatically slowed swimming speed from about 1 mm/s in NaCl or KCl (control) to 0.18 mm/s in LiCl. Li-treated cells subsequently incubated in 4 mM NaCl, KCl or sequentially in KCl and NaCl for a total of 20 min increased their swimming speed to 0.35, 0.45 and 0.67 mm/s, respectively. Paramecia readily took up Li+ in Na(+)- and K(+)-free media reaching intracellular concentrations of 5-10 mM in 10 mM extracellular Li+. Efflux of intracellular Li+ was stimulated 35% by extracellular 10 mM NaCl and 185% by 10 mM KCl over 10 mM choline chloride. Incubation of cells in 10 mM LiCl for 1 h inhibited the rate of Ca2+ efflux by 44% compared to cells in 10 mM NaCl. This may relate to the mechanism by which Li+ perturbs chemoresponse. A mutant with defects in Ca homeostasis responds normally to NH4Cl, but not to any of the stimuli that are affected by LiCl.  相似文献   

3.
The pancreatic B cell has been used as a model to compare the release of newly synthesized prohormone/hormone with that of stored hormone. Secretion of newly synthesized proinsulin/insulin (labeled with [3H]leucine during a 5-min pulse) and stored total immunoreactive insulin was monitored from isolated rat pancreatic islets at basal and stimulatory glucose concentrations over 180 min. By 180 min, 15% of the islet content of stored insulin was released at 16.7 mM glucose compared with 2% at 2.8 mM glucose. After a 30-min lag period, release of newly synthesized (labeled) proinsulin and insulin was detected; from 60 min onwards this release was stimulated up to 11-fold by 16.7 mM glucose. At 180 min, 60% of the initial islet content of labeled proinsulin was released at 16.7 mM glucose and 6% at 2.8 mM glucose. Specific radioactivity of the released newly synthesized hormone relative to that of material in islets indicated its preferential release. A similar degree of isotopic enrichment of released, labeled products was observed at both glucose concentrations. Quantitative HPLC analysis of labeled products indicated that glucose had no effect on intracellular proinsulin to insulin conversion; release of both newly synthesized proinsulin and insulin was sensitive to glucose stimulation; 90% of the newly synthesized hormone was released as insulin; and only 0.5% of proinsulin was rapidly released (between 30 and 60 min) in a glucose-independent fashion. It is thus concluded that the major portion of released hormone, whether old or new, processed or unprocessed, is directed through the regulated pathway, and therefore the small (less than 1%) amount released via a constitutive pathway cannot explain the preferential release of newly formed products from the B cell.  相似文献   

4.
5.
The influence of lithium ions (LiCl in concentrations of 0.5, 1.0, and 5.0 mM) on the growth processes of roots of 2-5-day old wheat seedlings was studied. It was shown that the inhibition of the root growth increased with the increase of LiCl concentration and seedling age. The membrane potential of root cells was lower and the loss of K+ by cells was greater when roots were treated with 5 mM LiCl, compared with the control. The growth inhibition by lithium was decreased by univalent ions, partially by potassium at the beginning of growth and completely by sodium throughout the experimental period. The divalent ions calcium and barium decreased the Li(+)-induced inhibition of root growth by reducing the rate of lithium uptake by cells. Myoinositol, controlled by Li-sensitive inositolmonophosphatase, reversed the Li-induced root growth inhibition in 2-day old seedlings, but did not prevent the inhibition during subsequent elongation. It can be concluded that lithium effects on wheat root growth are mediated by a partial blockage of signal transduction for proliferation (via the phosphoinositide cycle), because of calcium deficiency and caused by modification of ion transporting systems of the plasmalemma, and by disturbance of ion gradients, primarily H+ and K+.  相似文献   

6.
The effects of extracellular inositol and LiCl on intra-islet inositol cycling were investigated in isolated rat islets. Islets were cultured for 7 days in inositol-free RPMI 1640 containing 11.1 mM glucose and labeled with 3.7 MBq myo-[2-3H] inositol for the final 3 days. The labeled islets were then perifused under various conditions. There was a persistent increase in [3H] efflux from labeled islets stimulated with 16.7 mM glucose for 60 min. Addition of 5 mM inositol resulted in marked release of [3H] from islets and a decrease in radioactive inositol-lipid. When islets were perifused with 5 mM LiCl, the glucose-induced efflux of [3H] was greatly inhibited. The inhibitory effect of LiCl on [3H] efflux was partially corrected by the addition of 5 mM inositol. A prominent effect of LiCl was an increase in inositol monophosphate, indicating increased phospholipase C activity. This was detected within 5 min after glucose stimulation. The present data suggest that there is always very active intra-islet inositol cycling and that glucose can augument inositol-lipid metabolism.  相似文献   

7.
The objective of this work was to determine the time dependence of the basal component of intracellular degradation of newly synthesized collagen. Chick embryo tendon fibroblasts were incubated with [14C]proline, and degradation was quantified by measuring hydroxy[14C]proline in a low molecular weight fraction. When cultures were pulse labeled for 15 min and then incubated under chase conditions for 105 min, the amount of degraded collagen attained a value equal to approximately 20% of the amount synthesized during the labeling period; the data were fit with a simple exponential function that had a 40-min rise time and a 12-min lag time. In continuously labeled cultures, the rates of collagen synthesis and secretion reached constant values within 15 and 45 min, respectively. Degradation products were first detected 6-9 min after collagen synthesis began and were transported out of the cells more rapidly than intact collagenous molecules; however, percent degradation increased slowly and did not reach a constant value even after 240 min of incubation. Since collagen degradation lags collagen synthesis, it follows that degradation is a posttranslational, rather than a cotranslational, process, and since degradation and secretion are kinetically distinguishable, it follows that they occur in parallel pathways. A simple nonlinear model for posttranslational processing of collagen is proposed.  相似文献   

8.
Li(+) transport, intracellular immobilisation and Li(+)/Mg(2+) competition were studied in Li(+)-loaded bovine chromaffin cells. Li(+) influx rate constants, k(i), obtained by atomic absorption (AA) spectrophotometry, in control (without and with ouabain) and depolarising (without and with nitrendipine) conditions, showed that L-type voltage-sensitive Ca(2+) channels have an important role in Li(+) uptake under depolarising conditions. The Li(+) influx apparent rate constant, k(iapp), determined under control conditions by (7)Li NMR spectroscopy with the cells immobilised and perfused, was much lower than the AA-determined value for the cells in suspension. Loading of cell suspensions with 15 mmol l(-1) LiCl led, within 90 min, to a AA-measured total intracellular Li(+) concentration, [Li(+)](iT)=11.39+/-0.56 mmol (l cells)(-1), very close to the steady state value. The intracellular Li(+) T(1)/T(2) ratio of (7)Li NMR relaxation times of the Li(+)-loaded cells reflected a high degree of Li(+) immobilisation in bovine chromaffin cells, similar to neuroblastoma, but larger than for lymphoblastoma and erythrocyte cells. A 52% increase in the intracellular free Mg(2+) concentration, Delta[Mg(2+)](f)=0.27+/-0.05 mmol (l cells)(-1) was measured for chromaffin cells loaded with the Mg(2+)-specific fluorescent probe furaptra, after 90-min loading with 15 mmol l(-1) LiCl, using fluorescence spectroscopy, indicating significant displacement of Mg(2+) by Li(+) from its intracellular binding sites. Comparison with other cell types showed that the extent of intracellular Li(+)/Mg(2+) competition at the same Li(+) loading level depends on intracellular Li(+) transport and immobilisation in a cell-specific manner, being maximal for neuroblastoma cells.  相似文献   

9.
Melibiose transport of Escherichia coli.   总被引:4,自引:3,他引:1       下载免费PDF全文
K Tanaka  S Niiya    T Tsuchiya 《Journal of bacteriology》1980,141(3):1031-1036
Transport of [3H]melibiose, prepared from [3H]raffinose, was investigated in Escherichia coli. Na+ stimulated the transport of melibiose via the melibiose system, whereas Li+ inhibited it. Kinetic parameters of melibiose transport were determined. The Kt values were 0.57 mM in the absence of Na+ or Li+, 0.27 mM in the presence of 10 mM NaCl, and 0.29 mM in the presence of 10 mM LiCl. The Vmax values were 40 and 46 nmol/min per mg of protein in the absence and in the presence of NaCl and 18 nmol/min per mg of protein in the presence of LiCl. Melibiose transport via the melibiose system was temperature sensitive in a wild-type strain of Escherichia coli and was not inhibited by lactose. On the other hand, melibiose uptake via the lactose system was not temperature sensitive, was inhibited by lactose, and was not affected by Na+ and Li+. Methyl-beta-D-thiogalactoside, a substrate for both systems, inhibited the transport of melibiose via both systems.  相似文献   

10.
This paper describes a rapid and simple method for measuring CMP-phosphatidate (CMP-PA; CDP-diacylglycerol), providing a novel assay for inositol phospholipid metabolism. Rat cerebral-cortical slices labelled with [14C]cytidine were incubated with the muscarinic cholinergic agonist carbachol in the presence of various concentrations of LiCl; 10 mM-LiCl greatly enhanced the carbachol-stimulated formation of [14C]CMP-PA over a 60 min incubation period. The potentiation by Li+ was concentration-dependent, with a maximal enhancement at 3 mM and half-maximal enhancement at 0.6 mM-LiCl. The enhancement by Li+ could be reversed by incubation with myo-inositol; a maximal effect was observed with 10 mM-inositol. A similar, though smaller, enhancement of CMP-PA concentrations in the presence of LiCl was observed in slices stimulated with noradrenaline, 5-hydroxytryptamine and K+. The results are discussed in relation to previously observed effects of Li+ on inositol phospholipid metabolism.  相似文献   

11.
A gene encoding a Li(+) extrusion system was cloned from the chromosomal DNA of Pseudomonas aeruginosa and expressed in Escherichia coli cells. The gene enabled growth of E. coli KNabc cells, which were unable to grow in the presence of 10 mM LiCl or 0.1 M NaCl because of the lack of major Na(+) (Li(+))/H(+) antiporters. We detected Li(+)/H(+) and Na(+)/H(+) antiport activities in membrane vesicles prepared from E. coli KNabc cells that harbored a plasmid carrying the cloned gene. Activity of this antiporter was pH-dependent with an optimal pH activity between pH 7.5 and 8.5. These properties indicate that this antiporter is different from NhaP, an Na(+)/H(+) antiporter from P. aeruginosa that we reported previously, and that is rather specific to Na(+) but it cannot extrude Li(+) effectively. The gene was sequenced and an open reading frame (ORF) was identified. The amino acid sequence deduced from the ORF showed homology (about 60% identity and 90% similarity) with that of the NhaB Na(+)/H(+) antiporters of E. coli and Vibrio parahaemolyticus. Thus, we designated the antiporter as NhaB of P. aeruginosa. E. coli KNabc carrying the nhaB gene from P. aeruginosa was able to grow in the presence of 10 to 50 mM LiCl, although KNabc carrying nhaP was unable to grow in these conditions. The antiport activity of NhaB from P. aeruginosa was produced in E. coli and showed apparent Km values for Li(+) and Na(+) of 2.0 mM and 1.3 mM, respectively. The antiport activity was inhibited by amiloride with a Ki value for Li(+) and Na(+) of 0.03 mM and 0.04 mM, respectively.  相似文献   

12.
The time course of exocytosis of quanta of acetylcholine induced by 20 mM K+ was studied at the frog neuromuscular junction. Images of vesicle fusion on freeze-fracture replicas were mostly localized at the active zones in resting preparations fixed in 20 mM K+. Fusions appeared also outside the active zones in preparations fixed after 1 min exposure to 20 mM K+ and were evenly distributed over the presynaptic membrane after 5 min in 20 mM K+ (even though secretion was prevented by withdrawing Ca2+ until 30 s before fixation). The mean densities of vesicle fusions were comparable in all conditions, as were the total number of quanta released during the fixation period. This indicates that fusions outside active zones represent ectopic exocytosis, slowly activated by potassium. Partial inactivation of K(+)-induced quantal release (time and concentration-dependent) was observed electrophysiologically; this may be related to the observed decrease in density of vesicle fusions along the active zones, with time. Consistently, after 5 min in 15 mM K+ fusion density at the active zones remained high. It is concluded that active zone-associated and ectopic fusions are two exocytotic processes activated with differential time courses and concentration-dependence by K+.  相似文献   

13.
LiCl interacts synergistically with all-trans-retinoic acid, promoting the terminal differentiation of WEHI-3B D(+) cells, a phenomenon partially due to the ability of the monovalent lithium cation to inhibit the proteasome-dependent degradation of retinoic acid receptor alpha protein. In this report, the 20S proteasome was purified from WEHI-3B D(+) cells and the effects of LiCl on chymotrypsin-like (Chtl) activity and peptidyl-glutamyl peptide hydrolyzing (PGPH) activity were determined. LiCl functions to inactivate both proteasomal activities in a time-dependent manner, without affecting non-proteasomal proteases. The half-lives for inactivation of Chtl and PGPH hydrolyzing activities were approximately 23 and 36min, respectively, at 10mM LiCl. Both SDS and peptide substrate increased the rate of inactivation. Partial enzymatic activity was recovered after dialysis in the absence of SDS, indicating that the off-rate for lithium was extremely slow. The findings suggest that the inactivation of Chtl and PGPH activities by LiCl occurs through a proteasomal conformational change.  相似文献   

14.
The effects of acetylethylcholine mustard and its aziridinium derivative (AMMA) on acetylcholine (ACh) release and [3H]quinuclidinyl benzilate (QNB) binding were studied in rat cortical synaptosomes. After incubation for 5 min at 37 degrees C, AMMA reduced [3H]QNB binding with an IC50 of 9 microM. Following incubation for 5 min with 50 microM AMMA and washing, there was a 62% reduction in the [3H]QNB binding capacity with no change in the KD value for the remaining receptors, a result indicating the irreversibility of the AMMA binding. AMMA and oxotremorine both reduced the basal and 30 mM K+-induced release of newly synthesized [3H]ACh in dose-dependent manners over a 2.5-min period. At identical 50 microM concentrations, AMMA produced a much longer inhibition of basal [3H]ACh release than oxotremorine did. The inhibition of basal and 30 mM K+-induced [3H]ACh release by AMMA (10-250 microM) was blocked by 2 microM atropine during a 2.5-min release incubation, but not during a 30-min release incubation. After synaptosomes were treated with 50 microM AMMA for 5 min and the unbound drug was washed out from the tissue, [3H]ACh release (basal and K+-induced) was reduced. AMMA (50 microM) reduced high-affinity choline uptake and ACh synthesis by greater than 90% in this tissue, but these effects did not account for the [3H]ACh release inhibition, because they were not atropine sensitive and hemicholinium-3 had no effect on [3H]ACh release under the conditions used in these studies, i.e., after extracellular [3H]choline was washed out. Taken together, these results suggest that AMMA may be an irreversible agonist at presynaptic muscarinic autoreceptors.  相似文献   

15.
We studied the effect of a specific-competitive inhibitor of the sucrose taste response, p-nitrophenyl-D-glucopyranoside (PNP-Glu) on insulin release and phosphoinositide metabolism in rat pancreatic islets. The alpha-anomer, but not the beta-anomer, of PNP-Glu at a concentration of 5 mM inhibited insulin release induced by 10 mM glucose. Islets were labeled by exposure for 2 h to 10 uCi of myo-[2-3H] inositol solution supplemented with 2.8 mM glucose. Forty islets were then incubated in the presence of 10 mM LiCl, 1 mM inositol and 10 mM glucose with or without the anomers of PNP-Glu. [3H] radioactivity in the incubation medium remained significantly greater in the presence of the alpha-anomer of PNP-Glu than in the presence of glucose alone after 5- and 20-min incubation. The inositol monophosphate levels in the islets incubated with glucose alone were increased more than in the islets with alpha-anomer. The beta-anomer of PNP-Glu did not change either glucose-induced insulin release or phosphoinositide breakdown. A patch-clamp study revealed that neither anomer affected the glucose-dependent ATP-sensitive K(+)-channels. These results indicate that the anomeric preference for glucose in insulin release in the pancreatic islets is closely associated with phosphoinositide breakdown.  相似文献   

16.
Among the numerous effects of lithium on intracellular targets, its possible action on mitochondria remains poorly explored. In the experiments with suspension of isolated brain mitochondria, replacement of KCl by LiCl suppressed mitochondrial swelling, depolarization, and a release of cytochrome c induced by a single Ca2+ bolus. Li+ robustly protected individual brain mitochondria loaded with rhodamine 123 against Ca2+-induced depolarization. In the experiments with slow calcium infusion, replacement of KCl by LiCl in the incubation medium increased resilience of synaptic and nonsynaptic brain mitochondria as well as resilience of liver and heart mitochondria to the deleterious effect of Ca2+. In LiCl medium, mitochondria accumulated larger amounts of Ca2+ before they lost the ability to sequester Ca2+. However, lithium appeared to be ineffective if mitochondria were challenged by Sr2+ instead of Ca2+. Cyclosporin A, sanglifehrin A, and Mg2+, inhibitors of the mitochondrial permeability transition (mPT), increased mitochondrial Ca2+ capacity in KCl medium but failed to do so in LiCl medium. This suggests that the mPT might be a common target for Li+ and mPT inhibitors. In addition, lithium protected mitochondria against high Ca2+ in the presence of ATP, where cyclosporin A was reported to be ineffective. SB216763 and SB415286, inhibitors of glycogen synthase kinase-3beta, which is implicated in regulating reactive oxygen species-induced mPT in cardiac mitochondria, did not increase Ca2+ capacity of brain mitochondria. Altogether, these findings suggest that Li+ desensitizes mitochondria to elevated Ca2+ and diminishes cytochrome c release from brain mitochondria by antagonizing the Ca2+-induced mPT.  相似文献   

17.
1. Purified pig kidney ATPase was incubated in 30--160 mM Tris-HCl with various monovalent cations. 130 mM LiCl stimulated a ouabain-sensitive ATP hydrolysis (about 5% of the maximal (Na+ + K) activity), whereas 160 mM Tris-HCl did not stimulate hydrolysis. Similar results were obtained with human red blood cell broken membranes. 2. In the absence of Na+ and with 130 mM LiCl, the ATPase activity as a function of KCl concentration showed an initial slight inhibition (50 micrometer KCl) followed by an activation (maximal at 0.2 mM KCl) and a further inhibition, which was total at mM KCl. In the absence of LiCl, the rate of hydrolysis was not affected by any of the KCl concentrations investigated. 3. The lithium-activation curve for ATPase activity in the absence of both Na+ and K+ had sigmoid characteristics. It also showed a marked dependence on the total LiCl + Tris-HCl concentration, being inhibited at high concentrations. This inhibition was more noticeable at low LiCl concentrations. 4. In the absence of Na+, 130 mM Li+ showed promoted phosphorylation of ATPase from 1 to 3 mM ATP in the presence of Mg2+. In enzyme treated with N-ethylmaleimide, the levels of phosphorylation in Li+-containing solutions, amounted to 40% of those in Na+- and up to 7 times of those in K+-containing solutions. 5. The total (Na+ + K+)-ATPase activity was markedly inhibited at high buffer concentrations (Tris-HCl, Imidazole-HCl and tetramethylammonium-HEPES gave similar results) in cases when either the concentration of Na+ or K+ (or both) was below saturation. On the other hand, the maximal (Na+ + K+)-ATPase activity was not affected (or very slightly) by the buffer concentration. 6. Under standard conditions (Tris-HCl + NaCl = 160 mM) the Na+-activation curve of Na+-ATPase had a steep rise between 0 and 2.5 mM, a fall between 2.5 and 20 mM and a further increase between 20 and 130 mM. With 30 mM Tris-HCl, the curve rose more steeply, inhibition was noticeable at 2.5 mM Na+ and was completed at 5 mM Na+. With Tris-HCl + NaCl = 280 mM, the amount of activation decreased and inhibition at intermediate Na+ concentrations was not detected.  相似文献   

18.
Acetylcholinesterase (AChE) activity was determined at varied pH values between 6 and 11 in rat homogenated diaphragm and in eel E. electricus soluble AChE, in the presence or absence of 115 mM NaCl or LiCl. It was observed that by using homogenated diaphragm Li+ stimulated AChE at physiological pH (7-7.4). In control (no cations) a pH "optimum" of 8.6-9 was found, while in presence of NaCl or LiCl "optima" of 9.5 and 10.2 were observed respectively. At optimum pH, AChE activity was about 2 times higher with NaCl, while with LiCl 5 times higher than the control. Preincubation of the enzyme or the homogenate in cations presence at pH 5.5 or pH 12.8 had no effect on the activity, when it was measured at pH "optima". However, without cations only 76% of the activity in optimum pH after preincubation at pH 5.5 was found. These results suggest that: (a) Li+ may neutralize negative charges of AChE more successfully than Na+, resulting in better enzyme activation and stabilization; (b) a possible enzyme desensitization induced by pH changes can be avoided by increasing Na+ concentrations and especially Li+.  相似文献   

19.
The degradation rates of kidney rRNA labeled before UNI or sham are unchanged 5 days after the operations (t one-and-a half, 88 h). Therefore, there is no contribution from pre-existing rRNA to the increased amount of rRNA in the stimulated kidney. After labeling with L-(methyl-3H)methionine, the kinetics of incorporation into rRNA precursors, 10-60 min and at the postoperative times of 4, 16, 36, and 96 h. The specific activity of cytoplasmic rRNA after 1-h labeling with L-(methyl-3H)methionine increased occured at 4 or 96 h. Since (a) the rate of degradation of rRNA, (b) the kinetics of incorporation and processing of rRNA precursors, and (c) the rate of RNA synthesis appear unchanged after UNI, the accretion of rRNA must involve decreased degradation of newly synthesized rRNA.  相似文献   

20.
Fructose effect to suppress hepatic glycogen degradation   总被引:2,自引:0,他引:2  
The effect of fructose on glycogen degradation was examined by measuring the flux of 14C from prelabeled glycogen in perfused rat livers. During 2-h refeeding of 24-h-fasted rats, newly synthesized hepatic glycogen was labeled by intraperitoneal injection of [U-14C] galactose (0.1 mg and 0.02 microCi/g of body weight). The livers of refed rats were then perfused in a nonrecirculating fashion for an initial 30 min with glucose alone (10 mM) for the following 60 min with glucose (10 mM) without (n = 5) or with fructose (1, 2, or 10 mM; n = 5 for each). When livers were exposed to fructose, release of label into the perfusate immediately declined and remained markedly suppressed through the end of perfusion (p less than 0.05). The suppression was dose-dependent; at steady state (50-70 min), label release was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose, respectively (p less than 0.0001). Suppression was not accompanied by significant changes in the activities of glycogen synthase or phosphorylase assessed in vitro. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (Fru-1-P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.60 mumol/g of liver with 1, 2, and 10 mM fructose, respectively; p less than 0.0001). Maximum inhibition of label release was 82%; the Fru-1-P concentration for half inhibition was 0.57 mumol/g of liver, well within the concentration of Fru-1-P attained during refeeding. We conclude that fructose enhances net glycogen accumulation in liver by suppressing glycogenolysis and that the suppression is presumably caused by allosteric inhibition of phosphorylase by Fru-1-P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号