首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-subunit tethering complexes control membrane fusion events in eukaryotic cells. Class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) are two such complexes, both containing the Sec1/Munc18 protein subunit VPS33A. Metazoans additionally possess VPS33B, which has considerable sequence similarity to VPS33A but does not integrate into CORVET or HOPS complexes and instead stably interacts with VIPAR. It has been recently suggested that VPS33B and VIPAR comprise two subunits of a novel multi-subunit tethering complex (named “CHEVI”), perhaps analogous in configuration to CORVET and HOPS. We utilized the BioID proximity biotinylation assay to compare and contrast the interactomes of VPS33A and VPS33B. Overall, few proteins were identified as associating with both VPS33A and VPS33B, suggesting that these proteins have distinct sub-cellular localizations. Consistent with previous reports, we observed that VPS33A was co-localized with many components of class III phosphatidylinositol 3-kinase (PI3KC3) complexes: PIK3C3, PIK3R4, NRBF2, UVRAG and RUBICON. Although VPS33A clearly co-localized with several subunits of CORVET and HOPS in this assay, no proteins with the canonical CORVET/HOPS domain architecture were found to co-localize with VPS33B. Instead, we identified that VPS33B interacts directly with CCDC22, a member of the CCC complex. CCDC22 does not co-fractionate with VPS33B and VIPAR in gel filtration of human cell lysates, suggesting that CCDC22 interacts transiently with VPS33B/VIPAR rather than forming a stable complex with these proteins in cells. We also observed that the protein complex containing VPS33B and VIPAR is considerably smaller than CORVET/HOPS, suggesting that the CHEVI complex comprises just VPS33B and VIPAR.  相似文献   

2.
3.
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild‐type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.   相似文献   

4.
Entry into host macrophages and evasion of intracellular destruction mechanisms, including phagosome-lysosome fusion, are critical elements of Mycobacterium tuberculosis (Mtb) pathogenesis. To achieve this, the Mtb genome encodes several proteins that modify host signaling pathways. PtpA, a low-molecular weight tyrosine phosphatase, is a secreted Mtb protein of unknown function. The lack of tyrosine kinases in the Mtb genome suggests that PtpA may modulate host tyrosine phosphorylated protein(s). We report that a genetic deletion of ptpA attenuates Mtb growth in human macrophages, and expression of PtpA-neutralizing antibodies simulated this effect. We identify VPS33B, a regulator of membrane fusion, as a PtpA substrate. VPS33B and PtpA colocalize in Mtb-infected human macrophages. PtpA secretion combined with active-phosphorylated VPS33B inhibited phagosome-lysosome fusion, a process arrested in Mtb infections. These results demonstrate that PtpA is essential for Mtb intracellular persistence and identify a key host regulatory pathway that is inactivated by Mtb.  相似文献   

5.
vps33 mutants missort and secrete multiple vacuolar hydrolases and exhibit extreme defects in vacuolar morphology. Toward a molecular understanding of the role of the VPS33 gene in vacuole biogenesis, we have cloned this gene from a yeast genomic library by complementation of a temperature-sensitive vps33 mutation. Gene disruption demonstrated that VPS33 was not essential but was required for growth at high temperatures. At the permissive temperature, vps33 null mutants exhibited defects in vacuolar protein localization and vacuole morphology similar to those seen in most of the original mutant alleles. Sequence analysis revealed a putative open reading frame sufficient to encode a protein of 691 amino acids. Hydropathy analysis indicated that the deduced product of the VPS33 gene is generally hydrophilic, contains no obvious signal sequence or transmembrane domains, and is therefore unlikely to enter the secretory pathway. Polyclonal antisera raised against TrpE-Vps33 fusion proteins recognized a protein in yeast cells of the expected molecular weight, approximately 75,000. In cell fractionation studies, Vps33p behaved as a cytosolic protein. The predicted VPS33 gene product possessed sequence similarity with a number of ATPases and ATP-binding proteins specifically in their ATP-binding domains. One vps33 temperature-sensitive mutant contained a missense mutation near this region of sequence similarity; the mutation resulted in a Leu-646----Pro substitution in Vps33p. This temperature-sensitive mutant strain contained normal vacuoles at the permissive temperature but lacked vacuoles specifically in the bud at the nonpermissive temperature. Our data suggest that Vps33p acts in the cytoplasm to facilitate Golgi-to-vacuole protein delivery. We propose that as a consequence of the vps33 protein-sorting defects, abnormalities in vacuolar morphology and vacuole assembly result.  相似文献   

6.
Sec1/Munc‐18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps‐33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps‐33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS‐33.1 resulted in embryonic lethality. By contrast, vps‐33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm‐specific organelle. The endocytosis defect in the vps‐33.1 mutant was not restored by the expression of VPS‐33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS‐33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS‐33.2 has tissue/organelle specific functions in C. elegans.   相似文献   

7.
Yuanli Zhen  Wei Li 《Autophagy》2015,11(9):1608-1622
The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33AD251E with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33AD251E mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33AY440D and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33AD251E mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss.  相似文献   

8.
同型融合和蛋白质分选复合体(HOPS)由VPS11、VPS16、VPS18、VPS33、VPS39和VPS41这6种蛋白组成,能够通过膜融合机制来调节生物体内的膜泡运输。已有研究表明其可以作为融合因子来促进自噬体与溶酶体膜融合过程。为在体外确定HOPS复合体与自噬性SNARE蛋白STX17是否具有直接相互作用,首先利用PCR技术从已有质粒中扩增得到6种基因的编码序列,将其连接至pGEX 4T-1-GST或pET-His-NusA原核表达载体上,经菌落PCR初步鉴定和DNA测序无误后成功构建6种原核表达重组质粒并转化至大肠杆菌BL21(DE3);利用谷胱甘肽琼脂糖树脂与镍柱对重组蛋白进行纯化,烟草蚀纹病毒(TEV)蛋白酶酶切掉GST或His-NusA标签,得到分子量约为105 kDa的HA-VPS11蛋白、97 kDa的Flag-VPS16蛋白、108 kDa的HA-VPS18蛋白、70 kDa的Flag-VPS33蛋白、97 k Da的HA-VPS39蛋白和98 kDa的Flag-VPS41蛋白;通过体外GST pull-down技术对6种蛋白的功能进行验证,证实自噬性SNARE蛋白STX17和6种重组蛋白在体外均具有直接相互作用,为深入探究HOPS复合体参与自噬体与溶酶体膜融合过程中的功能及作用机制奠定实验基础。  相似文献   

9.
10.
Vacuolar protein sorting 4 (VPS4), is a member of ATPases associated with diverse cellular activities protein family. VPS4 is composed of VPS4A and VPS4B, VPS4B plays an important role in the lysosomal degradation pathway, intracellular protein trafficking, virus budding and abscission of cytokinesis. However, information regarding its distribution and possible function in the central nervous system is limited. Therefore, we performed a middle cerebral artery occlusion (MCAO) in adult rats and detected the dynamic changes of VPS4B in hippocampus CA1 subregion. We found that the VPS4B expression was increased strongly after MCAO and reached the peak after 3 days. VPS4B mainly located in the cytoplasm of neurons, but not astrocytes and microglia. Moreover, there was a concomitant up-regulation of active caspase-3. In vitro studies indicated that the up-regulation of VPS4B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knock-down of VPS4B in cultured differentiated PC12 cells by siRNA showed that VPS4B promoted the expression of active caspase-3. Collectively, all these results and MTT assay suggested that the up-regulation of VPS4B played an important role in the pathophysiology after MCAO, and further research is needed to have a good understanding of its function and mechanism.  相似文献   

11.
Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome (MIM 208085) is an autosomal recessive multisystem disorder that may be associated with germline VPS33B mutations. VPS33B is involved in regulation of vesicular membrane fusion by interacting with SNARE proteins, and evidence of abnormal polarised membrane protein trafficking has been reported in ARC patients. We characterised clinical and molecular features of ARC syndrome in order to identify potential genotype-phenotype correlations. The clinical phenotype of 62 ARC syndrome patients was analysed. In addition to classical features described previously, all patients had severe failure to thrive, which was not adequately explained by the degree of liver disease and 10% had structural cardiac defects. Almost half of the patients who underwent diagnostic organ biopsy (7/16) developed life-threatening haemorrhage. We found that most patients (9/11) who suffered severe haemorrhage (7 post biopsy and 4 spontaneous) had normal platelet count and morphology. Germline VPS33B mutations were detected in 28/35 families (48/62 individuals) with ARC syndrome. Several mutations were restricted to specific ethnic groups. Thus p.Arg438X mutation was common in the UK Pakistani families and haplotyping was consistent with a founder mutation with the most recent common ancestor 900–1,000 years ago. Heterozygosity was found in the VPS33B locus in some cases of ARC providing the first evidence of a possible second ARC syndrome gene. In conclusion we state that molecular diagnosis is possible for most children in whom ARC syndrome is suspected and VPS33B mutation analysis should replace organ biopsy as a first line diagnostic test for ARC syndrome.  相似文献   

12.
IL-33/IL-1F11 is a new member of the IL-1 family ligand and provokes T helper-type immune responses. IL-33 is the ligand of ST2 and IL-1 receptor accessory protein (IL-1RAcP) that triggers nuclear factor-κ light chain enhancer of activated B cells (NF-κB) and MAPK signaling. We discovered a novel short splice variant of IL-33 that was termed spIL-33. The new spIL-33 lacks exon 3 containing a proposed caspase-1 cleavage site. We isolated spIL-33 cDNA from the Huh7 human hepatocarcinoma cell line and expressed the recombinant spIL-33 protein in Escherichia coli. The recombinant spIL-33 and pro-IL-33 were not cleaved by caspase-1, unlike IL-18 (IL-1F4). The recombinant spIL-33 was constitutively active, and spIL-33-induced inflammatory cytokine production was caspase-1-independent in HMC-1 and Raw 264.7 cells. The recombinant spIL-33 induced the phosphorylation of IL-1 receptor-associated kinase (IRAK1), NF-κB, p38 MAPK, p44/42 MAPK, and JNK in a time- and dose-dependent manner. Anti-ST2 monoclonal antibody specifically blocked the spIL-33-induced cytokine production. In this study, we identified and characterized a new IL-33 splice variant, which was a constitutively active IL-33 isoform. The existence of constitutively active spIL-33 suggests that the biological activity of IL-33 could be triggered by diverse stimulations during immune responses. Further investigation of the spIL-33 expression pattern may contribute to understanding the involvement of IL-33 in inflammatory disorders.  相似文献   

13.
Membrane fusion is generally controlled by Rabs, soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), and tethering complexes. Syntaxin 17 (STX17) was recently identified as the autophagosomal SNARE required for autophagosome–lysosome fusion in mammals and Drosophila. In this study, to better understand the mechanism of autophagosome–lysosome fusion, we searched for STX17-interacting proteins. Immunoprecipitation and mass spectrometry analysis identified vacuolar protein sorting 33A (VPS33A) and VPS16, which are components of the homotypic fusion and protein sorting (HOPS)–tethering complex. We further confirmed that all HOPS components were coprecipitated with STX17. Knockdown of VPS33A, VPS16, or VPS39 blocked autophagic flux and caused accumulation of STX17- and microtubule-associated protein light chain (LC3)–positive autophagosomes. The endocytic pathway was also affected by knockdown of VPS33A, as previously reported, but not by knockdown of STX17. By contrast, ultraviolet irradiation resistance–associated gene (UVRAG), a known HOPS-interacting protein, did not interact with the STX17–HOPS complex and may not be directly involved in autophagosome–lysosome fusion. Collectively these results suggest that, in addition to its well-established function in the endocytic pathway, HOPS promotes autophagosome–lysosome fusion through interaction with STX17.  相似文献   

14.
Vacuolar protein sorting 4B (VPS4B), a member of ATPase family proteins, plays a crucial role in lysosome-dependent degradation. Recently, it was found that VPS4B could negatively regulate breast cancer progression through promoting lysosomal-dependent degradation for EGFR. Nevertheless, other studies found that VPS4B was also essential for cell division and mitosis through insuring the maintenance of centrosome and spindle assembly. Thus, the role of VPS4B in cancer biology remains under debate. In this study, we analyzed the clinical significance of VPS4B in NSCLC. The expression of VPS4B was evaluated by Western blot in 8 paired fresh NSCLC tissues and immunohistochemistry on 105 paraffin-embedded slices. VPS4B was highly expressed in NSCLC and significantly associated with NSCLCs tumor size, histological differentiation, clinical stage and Ki-67. Besides, high VPS4B expression was an independent prognostic factor for NSCLC patients’ poor survival. To determine whether VPS4B could regulate the proliferation of NSCLC cells, we knocked down the expression of VPS4B and analyzed the proliferation of A549 NSCLC cells using Western blot, CCK8 and flow cytometry assays, which together indicated that loss of VPS4B could inhibit cell cycle progress. These data suggest that VPS4B may promote the progression of NSCLC and be a biotarget for NSCLCs therapy.  相似文献   

15.
Endosomal sorting complex required for transport-I (ESCRT-I) is one of three defined protein complexes in the class E vacuolar protein sorting (VPS) pathway required for the sorting of ubiquitinated transmembrane proteins into internal vesicles of multivesicular bodies. In yeast, ESCRT-I is composed of three proteins, VSP23, VPS28, and VPS37, whereas in mammals only Tsg101(VPS23) and VPS28 were originally identified as ESCRT-I components. Using yeast two-hybrid screens, we identified one of a family of human proteins (VPS37C) as a Tsg101-binding protein. VPS37C can form a ternary complex with Tsg101 and VPS28 by binding to a domain situated toward the carboxyl terminus of Tsg101 and binds to another class E VPS factor, namely Hrs. In addition, VPS37C is recruited to aberrant endosomes induced by overexpression of Tsg101, Hrs, or dominant negative form of the class E VPS ATPase, VPS4. Enveloped viruses that encode PTAP motifs to facilitate budding exploit ESCRT-I as an interface with the class E VPS pathway, and accordingly, VPS37C is recruited to the plasma membrane along with Tsg101 by human immunodeficiency virus, type 1 (HIV-1) Gag. Moreover, direct fusion of VPS37C to HIV-1 Gag obviates the requirement for a PTAP motif to induce virion release. Depletion of VPS37C from cells does not inhibit murine leukemia virus budding, which is not mediated by ESCRT-I, however, if murine leukemia virus budding is engineered to be ESCRT-I-dependent, then it is inhibited by VPS37C depletion, and this inhibition is accentuated if VPS37B is simultaneously depleted. Thus, this study identifies VPS37C as a functional component of mammalian ESCRT-I.  相似文献   

16.
Yeast and animal homotypic fusion and vacuole protein sorting (HOPS) complexes contain conserved subunits, but HOPS-mediated traffic in animals might require additional proteins. Here, we demonstrate that SPE-39 homologues, which are found only in animals, are present in RAB5-, RAB7-, and RAB11-positive endosomes where they play a conserved role in lysosomal delivery and probably function via their interaction with the core HOPS complex. Although Caenorhabditis elegans spe-39 mutants were initially identified as having abnormal vesicular biogenesis during spermatogenesis, we show that these mutants also have disrupted processing of endocytosed proteins in oocytes and coelomocytes. C. elegans SPE-39 interacts in vitro with both VPS33A and VPS33B, whereas RNA interference of VPS33B causes spe-39–like spermatogenesis defects. The human SPE-39 orthologue C14orf133 also interacts with VPS33 homologues and both coimmunoprecipitates and cosediments with other HOPS subunits. SPE-39 knockdown in cultured human cells altered the morphology of syntaxin 7-, syntaxin 8-, and syntaxin 13-positive endosomes. These effects occurred concomitantly with delayed mannose 6-phosphate receptor-mediated cathepsin D delivery and degradation of internalized epidermal growth factor receptors. Our findings establish that SPE-39 proteins are a previously unrecognized regulator of lysosomal delivery and that C. elegans spermatogenesis is an experimental system useful for identifying conserved regulators of metazoan lysosomal biogenesis.  相似文献   

17.
18.
Phlorisovalerophenone synthase (VPS), a novel aromatic polyketide synthase, was purified to homogeneity from 4.2 mg protein extract obtained from hop (Humulus lupulus L.) cone glandular hairs. The enzyme uses isovaleryl-CoA or isobutyryl-CoA and three molecules of malonyl-CoA to form phlorisovalerophenone or phlorisobutyrophenone, intermediates in the biosynthesis of the hop bitter acids (alpha- and beta-acids). VPS is an homodimeric enzyme, with subunits of 45 kDa. The pI of the enzyme was 6.1. Km values of 4 microm for isovaleryl-CoA, 10 microm for isobutyryl-CoA and 33 microm for malonyl-CoA, were found. The amino-acid sequences of two peptides, obtained by digestion of VPS, showed that the enzyme is highly homologous to plant chalcone synthases. The functional and structural relationship between VPS and other aromatic polyketide synthases is discussed.  相似文献   

19.
Efficient human immunodeficiency virus type 1 (HIV-1) budding requires an interaction between the PTAP late domain in the viral p6(Gag) protein and the cellular protein TSG101. In yeast, Vps23p/TSG101 binds both Vps28p and Vps37p to form the soluble ESCRT-I complex, which functions in sorting ubiquitylated protein cargoes into multivesicular bodies. Human cells also contain ESCRT-I, but the VPS37 component(s) have not been identified. Bioinformatics and yeast two-hybrid screening methods were therefore used to identify four novel human proteins (VPS37A-D) that share weak but significant sequence similarity with yeast Vps37p and to demonstrate that VPS37A and VPS37B bind TSG101. Detailed studies produced four lines of evidence that human VPS37B is a Vps37p ortholog. 1) TSG101 bound to several different sites on VPS37B, including a putative coiled-coil region and a PTAP motif. 2) TSG101 and VPS28 co-immunoprecipitated with VPS37B-FLAG, and the three proteins comigrated together in soluble complexes of the correct size for human ESCRT-I ( approximately 350 kDa). 3) Like TGS101, VPS37B became trapped on aberrant endosomal compartments in the presence of VPS4A proteins lacking ATPase activity. 4) Finally, VPS37B could recruit TSG101/ESCRT-I activity and thereby rescue the budding of both mutant Gag particles and HIV-1 viruses lacking native late domains. Further studies of ESCRT-I revealed that TSG101 mutations that inhibited PTAP or VPS28 binding blocked HIV-1 budding. Taken together, these experiments define new components of the human ESCRT-I complex and characterize several TSG101 protein/protein interactions required for HIV-1 budding and infectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号