首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maize (Zea mays L.) haploid cells were cultivated in a 1500 ml aerated and stirred batch bioreactor using modified BM medium. Cell growth was highly affected by pH and dissolved oxygen, and we observed two fairly distinct growth phases. During the first two days after inoculation at pH 5.8, oxygen consumption was high and the cells lowered the pH to a value around 4.3. After this period the pH stabilized at 4.5 and the dissolved oxygen reached a steady level. Decreasing dissolved oxygen concentration leads to lower growth rate and to higher pH. Both events mean stress conditions for the cell culture and probably result in increased genetic variability, and the loss of regeneration capacity. The stress condition during the adaptation phase can be eliminated by decreasing the pH of the medium to 4.7 before inoculation and by keeping dissolved oxygen above 40%. These conditions provide prolonged exponential growth dynamics and the cell suspensions could be the basis of large scale cultures also.Abbreviations 2,4-d 2,4-dichlorophenoxyacetitc acid - NAA naphthalene acetic acid  相似文献   

2.
Inhibition of nitrate uptake by aluminium in maize   总被引:1,自引:0,他引:1  
Experiments with two maize (Zea mays L.) hybrids were conducted to determine (a) if the inhibition of nitrate uptake by aluminium involved a restriction in the induction (synthesis/assemblage) of nitrate transporters, and (b) if the magnitude of the inhibition was affected by the concurrent presence of ambient ammonium. At pH 4.5, the rate of nitrate uptake from 240 μM NH4NO3 was maximally inhibited by 100 μM aluminium, but there was little measurable effect on the rate of ammonium uptake. Presence of ambient aluminium did not eliminate the characteristic induction pattern of nitrate uptake upon first exposure of nitrogen-depleted seedlings to that ion. Removal of ambient aluminium after six hours of induction resulted in recovery within 30 minutes to rates of nitrate uptake that were similar to those of plants induced in absence of aluminium. Addition of aluminium to plants that had been induced in absence of aluminium rapidly restricted the rate of nitrate uptake to the level of plants that had been induced in the presence of aluminium. The data are interpreted as indicating that aluminium inhibited the activity of nitrate transporters to a greater extent than the induction of those transporters. When aluminium was added at initiation of induction, the effect of ambient ammonium on development of the inhibition by aluminium differed between the two hybrids. The responses indicate a complex interaction between the aluminium and ammonium components of high acidity soils in their influence on nitrate uptake. ei]{gnA C}{fnBorstlap}  相似文献   

3.
Effects of nitrate, chloride and chlorate ions upon nitrate and chlorate uptake by roots of maize ( Zea mays L., cv. B73) seedlings were examined. Net nitrate uptake, 36ClO3 influx and 36Cl influx (the latter two in a background of 0.5 m M KNO3) displayed similar pH profiles with optima at pH 5.5 and below. External, non-labeled chloride had little effect on the accumulation of 36ClO3 (both in 5 h and 20 min uptake assays), while nitrate and chlorate had almost identical, marked inhibitory effects. Nitrate pretreatment caused an apparent induction of both 36ClO3 and 15NO3 uptake activities. After 5 h of treatment in nitrate, the uptake activities of chloride- and chlorate-pretreated plants increased to that of nitrate-pretreated plants. During 6 h exposure to chlorate, 36ClO3 uptake activity of nitrate-pretreated plants decreased to that of chlorate- and chloride-pretreated plants. The results support the existence of a shared nitrate/chlorate transport system in maize roots which is not inhibited by external chloride, and which is induced by nitrate, but not by chlorate or chloride. The suggestion is made that selection of chlorate-resistant mutants of maize can identify nitrate uptake as well as nitrate reductase mutants.  相似文献   

4.
Summary In the present study nitrate uptake by maize (Zea mays L.) roots was investigated in the presence or absence of ferricyanide (hexacyanoferrate III) or dicumarol. Nitrate uptake caused an alkalization of the medium. Nitrate uptake of intact maize seedlings was inhibited by ferricyanide while the effect of dicumarol was not very pronounced. Nitrite was not detected in the incubation medium, neither with dicumarol-treated nor with control plants after application of 100 M nitrate to the incubation solution. In a second set of experiments interactions between nitrate and ferricyanide were investigated in vivo and in vitro. Nitrate (1 or 3 mM) did neither influence ferricyanide reductase activity of intact maize roots nor NADH-ferricyanide oxidoreductase activity of isolated plasma membranes. Nitrate reductase activity of plasma-membrane-enriched fractions was slightly stimulated by 25 M dicumarol but was not altered by 100 M dicumarol, while NADH-ferricyanide oxidoreductase activity was inhibited in the presence of dicumarol. These data suggest that plasma-membrane-bound standard-ferricyanide reductase and nitrate reductase activities of maize roots may be different. A possible regulation of nitrate uptake by plasmalemma redox activity, as proposed by other groups, is discussed.Abbreviations ADH alcohol dehydrogenase - HCF III hexacyanoferrate III (ferricyanide) - ME NADP-dependent malic enzyme - NR nitrate reductase - PM plasma membrane - PM NR nitrate reductase copurifying with plasma membranes  相似文献   

5.
The activity of nitrate reductase and the pool sizes of some amino acids and some sugars were measured in relation to the leaf water potential () of maize leaves. The activity of nitrate reductase was severely inhibited in water-stressed maize leaves. This was not due to substrate shortage or the presence of an inhibitor at reduced leaf water potential. While the typical proteinogenic amino acids valine, tyrosine, leucine and isoleucine were almost undetectable in the leaves of the control plants, their concentrations markedly increased with declining , thus indicating protein degradation. The concentrations of serine, glycine and glutamate increased upon water stress, their total amount in severely stressed leaves ranging 5- to 6-fold higher than the total amount of valine, tyrosine, leucine and isoleucine at this stage of water deficit. The pool sizes of glucose, fructose and sucrose decreased in relation to decreasing . The total amount of organic solutes remained almost constant at least up to a of approx.—1.0 MPa and then dropped to about 50% when reached –1.25 MPa.Abbreviations PCR photosynthetic carbon reduction cycle - PCO photosynthetic carbon oxidation cycle - PAR photosynthetically active radiation  相似文献   

6.
In a 2-year field experiment conducted on a Gleyic Luvisol in Stuttgart-Hohenheim one experimental and nine commercial maize cultivars were compared for their ability to utilize soil nitrate and to reduce related losses of nitrate through leaching. Soil nitrate was monitored periodically in CaCl2 extracts and in suction cup water. Nitrate concentrations in suction water were generally higher than in CaCl2 extracts. Both methods revealed that all cultivars examined were able to extract nitrate down to a soil depth of at least 120 cm (1988 season) or 150 cm (1987 season). Significant differences among the cultivars existed in nitrate depletion particularly in the subsoil. At harvest, residual nitrate in the upper 150 cm of the profile ranged from 73–110 kg N ha–1 in 1987 and from 59–119 kg N ha–1 in 1988. Residual nitrate was closely correlated with nitrate losses by leaching because water infiltration at 120 cm soil depth started 4 weeks after harvest (1987) or immediately after harvest (1988) and continued until early summer of the following year. The calculated amount of nitrate lost by leaching was strongly influenced by the method of calculation. During the winter of 1987/88 nitrate leaching ranged from 57–84 kg N ha–1 (suction cups) and 40–55 kg N ha–1 (CaCl2 extracts), respectively. The corresponding values for the winter of 1988/89 were 47–79 and 20–39 kg N ha–1, respectively. ei]Section editor: B E Clothier  相似文献   

7.
Fertile, transgenic maize plants were generated by electroporation of suspension culture cells that were treated with a pectin-degrading enzyme. Electroporation of cells from two different suspension cultures, one derived from A188 X B73 and one derived from a B73-related inbred, with a plasmid containing the bar gene, resulted in high-frequency recovery of stably transformed callus lines. Plants were regenerated from thirteen transformed callus lines and transmission of bar to progeny was demonstrated.  相似文献   

8.
The addition of 10 mM KNO3 to the solution bathing the roots of young nitrogen-starved seedlings of Zea mays L. enhanced root water transfer within 15 h, compared with 10 mM KCl addition. The free exudation flux was 2.2–3.9 times higher in excised KNO3-treated roots than in KCl-treated ones. Cryo-osmometry data for xylem sap suggested that, compared with chloride, nitrate treatment increased the steady solute flux into the xylem, but did not modify the osmotic concentration of sap. Root growth was not significantly modified by nitrate within 15 h. Root hydraulic conductances were measured by using either hydrostatic-pressure or osmotic-gradient methods. During hydrostatic experiments, the conductance (kp), which is thought to refer mainly to the apoplasmic pathway, was 1.6 times larger in KNO3-than in KCl-treated plants. From experiments in which polyethylene glycol (PEG) 8000 was used as external osmolyte, osmotic conductances (ks) were found to be smaller by 5–20 times than kp for the two kinds of plants. The KCl-treated roots were characterized by a low ks which was the same for influx or efflux of water. By contrast, KNO3-treated roots exhibited two distinct conductances ks1 and ks2, indicating that influx of water was easier than efflux when the water flow was driven by the osmotic pressure gradient. Infiltration of roots with KNO3 solution supported the idea that nitrate might enhance the efficiency of the cell-to-cell pathway. The low ks value of KCl-treated roots and the existence of two contrasting ks values (ks1 and ks2) for KNO3-treated roots are discussed in terms of reversible closing of water channels.  相似文献   

9.
Zou  C.  Shen  J.  Zhang  F.  Guo  S.  Rengel  Z.  Tang  C. 《Plant and Soil》2001,235(2):143-149
Comparative studies on the effect of nitrogen (N) form on iron (Fe) uptake and distribution in maize (Zea mays L. cv Yellow 417) were carried out through three related experiments with different pretreatments. Experiment 1: plants were precultured in nutrient solution with 1.0×10–4 M FeEDTA for 6 d and then exposed to NO3–N or NH4–N solution with 1.0×10–4 M FeEDTA or without for 7 d. Experiment 2: plants were precultured with 59FeEDTA for 6 d and were then transferred to the solution with different N forms, and 0 and 1.0×10–4 M FeEDTA for 8 d. Experiment 3: half of roots were supplied with 59FeEDTA for 5 d and then cut off, with further culturing in treatment concentrations for 7 d. In comparison to the NH4-fed plants, young leaves of the NO3-fed plants showed severe chlorosis under Fe deficiency. Nitrate supply caused Fe accumulation in roots, while NH4–N supply resulted in a higher Fe concentration in young leaves and a lower Fe concentration in roots. HCl-extractable (active) Fe was a good indicator reflecting Fe nutrition status in maize plants. Compared with NO3-fed plants, a higher proportion of 59Fe was observed in young leaves of the Fe-deficient plants fed with NH4–N. Ammonium supply greatly improved 59Fe retranslocation from primary leaves and stem to young leaves. Under Fe deficiency, about 25% of Fe in primary leaves of the NH4-fed plants was mobilized and retranslocated to young leaves. Exogenous Fe supply decreased the efficiency of such 59Fe retranslocation. The results suggest that Fe can be remobilized from old to young tissues in maize plants but the remobilization depends on the form of N supply as well as supply of exogenous Fe.  相似文献   

10.
The plant root system is highly sensitive to nutrient availability and distribution in the soil. For instance, root elongation is inhibited when grown in high nitrate concentrations. To decipher the mechanism underlying the nitrate-induced inhibition of root elongation, the involvement of the plant hormone auxin in nitrate-dependent root elongation of maize was investigated. Root growth, nitrogen and nitrate concentrations, and indole-3-acetic acid (IAA) concentrations in roots and in phloem exudates of maize grown under varying nitrate concentrations were analyzed. Total N and nitrate concentrations in shoots and roots increased and elongation of primary, seminal and crown roots were inhibited with increasing external nitrate from 0.05 to 5 mM. High nitrate-inhibited root growth resulted primarily from the reduced cell elongation and not from changes in meristem length. IAA concentrations in phloem exudates reduced with higher nitrate supply. Inhibition of root growth by high nitrate was closely related to the reduction of IAA levels in roots, especially in the sections close to root tips. Exogenous NAA and IAA restored primary root growth in high nitrate concentrations. It is concluded that the inhibitory effect of high nitrate concentrations on root growth may be partly attributed to the decrease in auxin concentrations of roots.  相似文献   

11.
12.
Summary When roots of five day-old maize seedlings were exposed to15N-nitrate, a constant (25–29%) proportion of the reduced15N derived from the entering15N-nitrate accumulated as insoluble15N nitrogen. Constancy was established by two hours and lasted through 12 hours at ambient15N-nitrate concentrations of 0.05 mM to 20.0 mM. Even when little15N nitrate had been reduced (<2 moles), there was a linear relationship between accumulation of insoluble15N (but not accumulation or translocation of soluble reduced15N) and total reduced15N. It is proposed that protein synthesis from the entering nitrate occurs in close association with nitrate reduction.Paper No. 9764 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC, 27695-7619, USA. This research was supported by Grant No. PCM-8118661 from the National Science Foundation.Use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the product's name or criticisms of similar ones not mentioned.  相似文献   

13.
H. Wenzler  F. Meins Jr. 《Protoplasma》1986,131(1):103-105
Summary We have mapped the regions of young leaves from 2-, 3-, and 4-week-old axenically grownZea mays L. cv. Seneca 60 plants capable of proliferation in culture. The capacity of 3 mm wide segments to form proliferating cultures was limited to a zone within the first approximately 40 mm from the leaf base independent of leaf length. Within this zone the incidence of forming proliferating cultures was constant. The responsive zones were found in pairs of adjacent leaves: leaf 3 and 4 at 2 weeks, leaf 4 and 5 at 3 weeks, and leaf 5 and 6 at 4 weeks. We conclude that there is a window of proliferative potential with definite boundaries. This window appears to move toward developmentally younger pairs of leaves with increasing age of the plant.  相似文献   

14.
15.
Callus and suspension cultures of two genotypes and two morphological forms (friable and compact) were established on MS medium supplemented with 10.47 μM NAA and 4.5 μM BA. Biomass increase in 14-day-culture was calculated and ursolic acid (UA) content was determined by HPLC and MS. The growth rate and UA accumulation was found to be significant in the two genotypes. The compact biomass of both genotypes demonstrated a much slower growth rate and a lower UA accumulation than the friable biomasses. The accumulation of UA in suspension culture was constant in time when derived from the friable callus but it declined, when derived from the compact callus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

17.
Root growth and nitrate utilization of maize cultivars under field conditions   总被引:24,自引:1,他引:23  
In a 2-year field study conducted on a high fertilized Gleyic Luvisol in Stuttgart-Hohenheim significant differences among 10 maize cultivars were observed in soil nitrate depletion. The different capability of the cultivars to utilize nitrate particularly from the subsoil was positively correlated with (a) shoot N uptake at maturity, and (b) root length density (Lv) in the subsoil layers at silking. Critical root length densities for nitrate uptake were estimated by (a) calculating uptake rates per unit root length (U), (b) subsequent calculation of needed nitrate concentration in soil solution (C1) to sustain calculated U according to the Baldwin formula, and (c) reducing measured Lv and proportionate increase of U until needed concentration equaled measured concentration. Uptake rate generally increased with soil depth. Critical root length densities for cultivar Brummi (high measured root length densities and soil nitrate depletion) at 60–90 cm depth ranged from 7 % (generative growth) to 28 % (vegetative growth) of measured Lv Measured root length density of each other cultivar was higher than critical root length density for Brummi indicating that the root system of each cultivar examined would have been able to ensure N uptake of Brummi. Positive relationships between root length density and nitrate utilization as indicated by correlation analysis therefore could not be explained by model calculations. This might be due to simplifying assumptions made in the model, which are in contrast to non-ideal uptake conditions in the field, namely irregular distribution of roots and nitrate in the soil, limited root/soil contact, and differences between root zones in uptake activity. It is concluded from the field experiment that growing of cultivars selected for high N uptake-capacity of the shoots combined with high root length densities in the subsoil may improve the utilization of a high soil nitrate supply.  相似文献   

18.
Young maize (Zea mays L.) plants, 7 days after germination were exposed to nutrient solutions which were either aerated or not aerated for 14 days. Nutrients were supplied as 50% strength Hoagland’s solution or, in the case of the four ‘low nutrient’ treatments, N, P, K or Ca were supplied at the equivalent of 10% strength Hoagland’s solution. Shoot fresh weight was decreased by 25% due to lack of aeration; O2 deficiency also impaired leaf elongation but not dry weights, suggesting that lack of O2 in the roots impaired cell expansion in shoots more than dry weight accumulation. The distribution of N, P, K and Ca within shoots was consistent with their relative mobilities in the phloem; at least 7% of Ca in plants after 14 days of treatments was found in the oldest leaf whereas N, P and K were rapidly remobilised to younger tissues. Between 33 and 49% of the total N, P and K in the shoot was found in the 40 mm of tissue at the base of the growing leaves in plants grown for 14 days at low nutrient concentrations. Concentrations (dry weight basis) of phloem-mobile nutrients were also greatest in the growing zones of the leaves, especially in the case of N and P. Calcium, on the other hand, was found in relatively low concentrations in the youngest tissue and as with the other nutrients, concentrations declined due to low external supply, non-aeration or a combination of both. In spite of the failure of Ca to move from old to young leaves, the effect of the deficiencies of N, P and K was probably as severe as that of Ca in the youngest tissues of treated plants. Calcium uptake by the whole shoot appeared to be slightly less sensitive to O2 deficits than that of N, P and K. This compensated for the failure of Ca to move to growing tissues during periods of low external Ca supply.  相似文献   

19.
Alan Olness 《Plant and Soil》1984,76(1-3):67-73
Summary Nitrogen (N) accumulation data from a replicated field study were fitted to a tanh (time) function and the derivate obtained to determine relative maximum rates of accumulation by maize. Both positive and negative effects of tillage on N accumulation rates were observed. Most of the N accumulation occurred over a 30-day period and time of N accumulation was not affected by tillage. Tilled profiles tend to contain greater NO3–N, greater aeration, and lower moisture contents than untilled profiles, and these characteristics interact to affect plant N accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号