首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Changes in the synthesis and activity of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are associated with myocardial remodeling. Here we measured the expression and activity of MMPs and TIMPs, and tested the hypothesis that increased MMP activity plays a proapoptotic role in -adrenergic receptor (-AR)-stimulated apoptosis of adult rat ventricular myocytes (ARVMs). -AR stimulation (isoproterenol, 24 h) increased mRNA levels of MMP-2 and TIMP-1 while it decreased TIMP-2 mRNA levels as analyzed by real-time PCR. Western blot analysis, immunocytochemical analysis, in-gel zymography, and MMP-2 activity assay confirmed -AR-stimulated increases in MMP-2 protein levels and activity. Inhibition of MMPs using GM-6001 (a broad-spectrum inhibitor of MMPs), SB3CT (inhibitor of MMP-2), and purified TIMP-2 inhibited -AR-stimulated apoptosis as determined by TdT-mediated dUTP nick end labeling staining. Treatment with active MMP-2 alone increased the number of apoptotic cells. This increase in MMP-2-mediated apoptosis was inhibited by GM-6001 and SB3CT pretreatment. Coimmunoprecipitation studies indicated increased physical association of MMP-2 with 1-integrins after -AR stimulation. Inhibition of MMP-2 using SB3CT or stimulation of 1-integrin signaling using laminin inhibited the increased association of MMP-2 with 1-integrins. -AR stimulation increased poly-ADP-ribose-polymerase cleavage, which was inhibited by inhibition of MMP-2. These data suggest the following: 1) -AR stimulation increases MMP-2 expression and activity and inhibits TIMP-2 expression; 2) inhibition of MMPs, most likely MMP-2, inhibits -AR-stimulated apoptosis; and 3) the apoptotic effects of MMP-2 may be mediated, at least in part, via its interaction with 1 integrins and poly-ADP-ribose-polymerase cleavage. integrins; poly-ADP-ribose-polymerase  相似文献   

2.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

3.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

4.
We studied the functions of -subunits of Gi/o protein using the Xenopus oocyte expression system. Isoproterenol (ISO) elicited cAMP production and slowly activating Cl currents in oocytes expressing 2-adrenoceptor and the protein kinase A-dependent Cl channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 5-Hydroxytryptamine (5-HT), [D-Ala2, D-Leu5]-enkephalin (DADLE), and baclofen enhanced ISO-induced cAMP levels and CFTR currents in oocytes expressing 2-adrenoceptor-CFTR and 5-HT1A receptor (5-HT1AR), -opioid receptor, or GABAB receptor, respectively. 5-HT also enhanced pituitary adenylate cyclase activating peptide (PACAP) 38-induced cAMP levels and CFTR currents in oocytes expressing PACAP receptor, CFTR and 5-HT1AR. The 5-HT-induced enhancement of Gs-coupled receptor-mediated currents was abrogated by pretreatment with pertussis toxin (PTX) and coexpression of G transducin (Gt). The 5-HT-induced enhancement was further augmented by coexpression of the G-activated form of adenylate cyclase (AC) type II but not AC type III. Thus -subunits of Gi/o protein contribute to the enhancement of Gs-coupled receptor-mediated responses. 5-HT and DADLE did not elicit any currents in oocytes expressing 5-HT1AR or -opioid receptor alone. They elicited Ca2+-activated Cl currents in oocytes coexpressing these receptors with the G-activated form of phospholipase C (PLC)-2 but not with PLC-1. These currents were inhibited by pretreatment with PTX and coexpression of Gt, suggesting that -subunits of Gi/o protein activate PLC-2 and then cause intracellular Ca2+ mobilization. Our results indicate that -subunits of Gi/o protein participate in diverse intracellular signals, enhancement of Gs-coupled receptor-mediated responses, and intracellular Ca2+ mobilization. G protein-coupled receptor; cystic fibrosis transmembrane conductance regulator gene; cross talk; electrophysiology  相似文献   

5.
v5-Integrin is the sole integrin receptor at the retinal pigment epithelium (RPE)-photoreceptor interface and promotes RPE phagocytic signaling to the tyrosine kinase Mer tyrosine kinase (MerTK) once a day in response to circadian photoreceptor shedding. Herein we identify a novel role for v5-integrin in permanent RPE-photoreceptor adhesion that is independent of v5's function in retinal phagocytosis. To compare retinal adhesion of wild-type and 5-integrin–/– mice, we mechanically separated RPE and neural retina and quantified RPE protein and pigment retention with the neural retina. Lack of v5-integrin with normal expression of other RPE integrins greatly weakened retinal adhesion in young mice and accelerated its age-dependent decline. Unexpectedly, the strength of wild-type retinal adhesion varied with a diurnal rhythm that peaked 3.5 h after light onset, after the completion of phagocytosis, when integrin signaling to MerTK is minimal. Permanent v5 receptor deficiency attenuated the diurnal peak of retinal adhesion in 5-integrin–/– mice. These results identify v5-integrin as the first RPE receptor that contributes to retinal adhesion, a vital mechanism for long-term photoreceptor function and viability. Furthermore, they indicate that v5 receptors at the same apical plasma membrane domain of RPE cells fulfill two separate functions that are synchronized by different diurnal rhythms. circadian rhythm; knockout; photoreceptors; retinal pigment epithelium  相似文献   

6.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

7.
Integrin mechanotransduction is a ubiquitous biological process. Mechanical forces are transduced transmembranously by an integrin's ligand-bound extracellular domain through its -subunit's cytoplasmic domain connected to the cytoskeleton. This often culminates in the activation of tyrosine kinases directing cell responses. The delicate balance between hemostasis and thrombosis requires exquisitely fine-tuned integrin function, and balance is maintained in vivo despite that the major platelet integrin IIb3 is continuously subjected to frictional or shearing forces generated by laminar blood flow. To test the hypothesis that platelet function is regulated by the direct effects of mechanical forces on IIb3, we examined IIb3/cytoskeletal interactions in human platelets exposed to shear stress in a cone-plate viscometer. We observed that -actinin, myosin heavy chain, and Syk coimmunoprecipitate with IIb3 in resting platelets and that 120 dyn/cm2 shear stress leads to their disassociation from IIb3. Shear-induced disassociation of -actinin and myosin heavy chain from the 3 tail is unaffected by blocking von Willebrand factor (VWF) binding to glycoprotein (Gp) Ib-IX-V but abolished by blocking VWF binding to IIb3. Syk's disassociation from 3 is inhibited when VWF binding to either GpIb-IX-V or IIb3 is blocked. Shear stress-induced phosphorylation of SLP-76 and its association with tyrosine-phosphorylated adhesion and degranulation-promoting adapter protein are inhibited by blocking ligand binding to IIb3 but not by blocking ligand binding to GpIb-IX-V. Chinese hamster ovary cells expressing IIb3 with 3 truncated of its cytoskeletal binding domains demonstrate diminished shear-dependent adhesion and cohesion. These results support the hypothesis that shear stress directly modulates IIb3 function and suggest that shear-induced IIb3-mediated signaling contributes to the regulation of platelet aggregation by directing the release of constraining cytoskeletal elements from the 3-tail. platelets; mechanoreceptor; integrin; shear stress; signal transduction  相似文献   

8.
Laminin 5-chain, a constituent of laminins-10 and -11, is expressed in endothelial basement membranes. In this study we evaluated the roles of 5 laminins and Lutheran blood group glycoproteins (Lu), recently identified receptors of the laminin 5-chain, in the adhesion of human dermal microvascular and pulmonary artery endothelial cells. Field emission scanning electron microscopy and immunohistochemistry showed that the endothelial cells spread on laminin-10 and formed fibronectin-positive fibrillar adhesion structures. Immunoprecipitation results suggested that the cells produced fibronectin, which they could use as adhesion substratum, during the adhesion process. When the protein synthesis during the adhesion was inhibited with cycloheximide, the formation of fibrillar adhesions on laminin-10 was abolished, suggesting that laminin-10 does not stimulate the formation of any adhesion structures. Northern and Western blot analyses showed that the cells expressed Mr 78,000 and 85,000 isoforms of Lu. Quantitative cell adhesion assays showed that in the endothelial cell adhesion to laminin-10, Lu acted in concert with integrins 1 and v3, whereas in the adhesion to laminin-10/11, Lu and integrin 1 were involved. In the cells adhering to the 5 laminins, Lu and the integrins showed uniform cell surface distribution. These findings indicate that 5 laminins stimulate endothelial cell adhesion but not the formation of fibrillar or focal adhesions. Lu mediates the adhesion of human endothelial cells to 5 laminins in collaboration with integrins 1 and v3. integrin; cycloheximide  相似文献   

9.
Matrix metalloproteinases (MMPs), a family of extracellular endopeptidases, are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Interleukin-1 (IL-1), increased in the heart post-myocardial infarction (post-MI), plays a protective role in the pathophysiology of left ventricular (LV) remodeling following MI. Here we studied expression of various angiogenic genes affected by IL-1 in cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of MMP-2. cDNA array analysis of 96 angiogenesis-related genes indicated that IL-1 modulates the expression of numerous genes, notably increasing the expression of MMP-2, not MMP-9. RT-PCR and Western blot analyses confirmed increased expression of MMP-2 in response to IL-1. Gelatin in-gel zymography and Biotrak activity assay demonstrated that IL-1 increases MMP-2 activity in the conditioned media. IL-1 activated ERK1/2, JNKs, and protein kinase C (PKC), specifically PKC/1, and inhibition of these cascades partially inhibited IL-1-stimulated increases in MMP-2. Inhibition of PKC/1 failed to inhibit ERK1/2. However, concurrent inhibition of PKC/1 and ERK1/2 almost completely inhibited IL-1-mediated increases in MMP-2 expression. Inhibition of p38 kinase and nuclear factor-B (NF-B) had no effect. Pretreatment with superoxide dismutase (SOD) mimetic, MnTMPyP, increased MMP-2 protein levels, whereas pretreatment with SOD and catalase mimetic, EUK134, partially inhibited IL-1-stimulated increases in MMP-2 protein levels. Exogenous H2O2 significantly increased MMP-2 protein levels, whereas superoxide generation by xanthine/xanthine oxidase had no effect. This in vitro study suggests that IL-1 modulates expression and activity of MMP-2 in CMECs. MMP-2; protein kinase C; ERK1/2; JNK  相似文献   

10.
Temporal and spatial differences in extracellular matrix play critical roles in cell proliferation, differentiation and migration. Different migratory stimuli use different substrates and receptors to achieve cell migration. To understand the mechanism of insulin-like growth factor binding protein-5 (IGFBP-5)-induced migration in mesangial cells, the roles of integrins and substrates were examined. IGFBP-5 induced an increase in mRNA expression for laminin (LN) chains lama4, lamb2, and lamc1, suggesting that LN-9 might be required for migration. Antibodies to the LN4 and LN2 chains, but not LN1, blocked IGFBP-5-induced migration. Anti-sense morpholino oligonucleotide inhibition of expression of LN4 substantially reduced expression of LN-8/9 (411/421, 411/421) and prevented IGFBP-5-induced migration. Anti-sense inhibition of lamb2 reduced expression of LN-9. Absence of LN-9 prevented IGFBP-5-induced migration, which was not preserved by continued expression of LN-8. The requirement for LN-9 was further supported by studies of T98G cells, which express predominantly LN-8. IGFBP-5 had little effect on migration in these cells, but increased migration when T98G cells were plated on LN-8/9. IGFBP-5-mediated mesangial cell migration was inhibited by antibodies that block attachment to 61-integrins but was unaffected by antibodies and disintegrins that block binding to other integrins. Furthermore, in cells with anti-sense inhibited expression of LN-9, integrin 61 was no longer detected on the cell surface. These studies suggest the specificity of mechanisms of migration induced by specific stimuli and for the first time demonstrate a unique function for LN-9 in mediating IGFBP-5-induced migration. migration; integrins; extracellular matrix  相似文献   

11.
This study investigated if an osteoclastic protein-tyrosine phosphatase (PTP), PTP-oc, plays a role in the functional activity and differentiation of osteoclastic cells by determining the effects of overexpression of wild-type (WT)- or phosphatase-deficient (PD)-PTP-oc on bone resorption activity and differentiation of human promyelomonocytic U-937 cells, which could be induced to differentiate into "osteoclast-like" cells by phorbol ester/1,25(OH)2D3 treatment. U-937 cells overexpressing WT- or PD-PTP-oc were produced with a transposon-based vector. The size and depth of resorption pits created by WT-PTP-oc-overexpressing osteoclast-like cells were greater, while those by PD-PTP-oc-overexpressing osteoclast-like cells were less, than those created by control osteoclast-like cells. Overexpression of WT-PTP-oc also enhanced, while overexpression of PD-PTP-oc suppressed, their differentiation into osteoclast-like cells. Overexpression of WT-PTP-oc increased apoptosis and proliferation of U-937 cells, and overexpression of PD-PTP-oc reduced cell proliferation. Cells overexpressing WT-PTP-oc has also led to greater c-Src and NF- activation, whereas cells overexpressing PD-PTP-oc resulted in less c-Src and NF- activation. c-Src activation and NF- activation each correlated with resorption activity and differentiation into osteoclast-like cells. In summary, these results show that 1) PTP-oc regulates both the activity and the differentiation of osteoclast-like cells derived from U-937 cells; 2) PTP-oc enzymatic activity is important to these processes; 3) high PTP-oc enzymatic activity caused an increase in U-937 cell apoptosis and proliferation, leading to no significant changes in the number of viable cells; and 4) some of the PTP-oc actions are mediated in part by the c-Src and/or NF- pathways. osteoclast; resorption; nuclear factor-; c-Src  相似文献   

12.
Heterotrimeric Gi proteins may play a role in lipopolysaccharide (LPS)-activated signaling through Toll-like receptor 4 (TLR4), leading to inflammatory mediator production. Although LPS is a TLR4 ligand, the gram-positive bacterium Staphylococcus aureus (SA) is a TLR2 ligand, and group B streptococci (GBS) are neither TLR2 nor TLR4 ligands but are MyD88 dependent. We hypothesized that genetic deletion of Gi proteins would alter mediator production induced by LPS and gram-positive bacterial stimulation. We examined genetic deletion of Gi2 or Gi1/3 protein in Gi2-knockout (Gi2–/–) or Gi1/3-knockout (Gi1/3–/–) mice. LPS-, heat-killed SA-, or GBS-induced mediator production in splenocytes or peritoneal macrophages (M) was investigated. There were significant increases in LPS-, SA-, and GBS-induced production of TNF- and IFN- in splenocytes from Gi2–/– mice compared with wild-type (WT) mice. Also, LPS-induced TNF- was increased in splenocytes from Gi1/3–/– mice. In contrast to splenocytes, LPS-, SA-, and GBS-induced TNF-, IL-10, and thromboxane B2 (TxB2) production was decreased in M harvested from Gi2–/– mice. Also, LPS-induced production of IL-10 and TxB2 was decreased in M from Gi1/3–/– mice. In subsequent in vivo studies, TNF- levels after LPS challenge were significantly greater in Gi2–/– mice than in WT mice. Also, myeloperoxidase activity, a marker of tissue neutrophil infiltration, was significantly increased in the gut and lung of LPS-treated Gi2–/– mice compared with WT mice. These data suggest that Gi proteins differentially regulate murine TLR-mediated inflammatory cytokine production in a cell-specific manner in response to both LPS and gram-positive microbial stimuli. Gi protein-deficient mice; endotoxin; group B streptococci; Staphylococcus aureus; Toll-like receptors  相似文献   

13.
The carboxy terminus (CT) of the colonic H+-K+-ATPase is required for stable assembly with the -subunit, translocation to the plasma membrane, and efficient function of the transporter. To identify protein-protein interactions involved in the localization and function of HK2, we selected 84 amino acids in the CT of the -subunit of mouse colonic H+-K+-ATPase (CT-HK2) as the bait in a yeast two-hybrid screen of a mouse kidney cDNA library. The longest identified clone was CD63. To characterize the interaction of CT-HK2 with CD63, recombinant CT-HK2 and CD63 were synthesized in vitro and incubated, and complexes were immunoprecipitated. CT-HK2 protein (but not CT-HK1) coprecipitated with CD63, confirming stable assembly of HK2 with CD63. In HEK-293 transfected with HK2 plus 1-Na+-K+-ATPase, suppression of CD63 by RNA interference increased cell surface expression of HK2/NK1 and 86Rb+ uptake. These studies demonstrate that CD63 participates in the regulation of the abundance of the HK2-NK1 complex in the cell membrane. protein assembly; cell surface localization  相似文献   

14.
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IB kinase (IKK)/nuclear factor-B (NF-B) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of 51 integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C- inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca2+ pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca2+ concentration ([Ca2+]i) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca2+]i rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC- activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC--PKC-IKK-NF-B signaling cascade. Another crucial factor, [Ca2+]i increase, may at least be required to activate PKC needed for NF-B activation. nuclear factor-B; phosphatidylinositol 3-kinase; phospholipase C-; protein kinase C; intracellular Ca2+ concentration  相似文献   

15.
Angiotensin II (ANG II) has been etiologically linked to vascular disease; however, its role in the alterations of endothelial function that occur in vascular disorders is not completely understood. Matrix metalloproteinases (MMPs) and proinflammatory cytokines are involved in the pathological remodeling of blood vessels that occurs in vascular disease. In this study we evaluated the effects of ANG II on tumor necrosis factor (TNF)- and MMP-2 production in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with ANG II (0.1–10 µM) for 24 h, in the presence or absence of antagonists of ANG II type 1 (AT1R) and type 2 (AT2R) receptors, and the production and release of TNF- and MMP-2 were assessed. ANG II increased TNF- mRNA and protein expression and the release of bioactive TNF-. Moreover, ANG II induced MMP-2 release and reduced the secretion of tissue inhibitor of MMP (TIMP)-2 from endothelial cells. To elucidate whether endogenous TNF- could mediate the effects of ANG II on MMP-2 release, cells were pretreated with anti-TNF- neutralizing antibodies or pentoxifylline (an inhibitor of TNF- synthesis). TNF- inhibition prevented the secretion of MMP-2 induced by ANG II. Furthermore, AT1R antagonism with candesartan prevented the formation of MMP-2 and TNF- and the reduction of TIMP-2 induced by ANG II. These results indicate that ANG II, via AT1R, modulates the secretion of TNF- and MMP-2 from endothelial cells and that TNF- mediates the effects of ANG II on MMP-2 release. remodeling; vasoactive mediators; inflammation  相似文献   

16.
Using monolayers of intestinal cells, we reported that upregulation of inducible nitric oxide synthase (iNOS) is required for oxidative injury and that activation of NF-B is key to cytoskeletal instability. In the present study, we hypothesized that NF-B activation is crucial to oxidant-induced iNOS upregulation and its injurious consequences: cytoskeletal oxidation and nitration and monolayer dysfunction. Wild-type (WT) cells were pretreated with inhibitors of NF-B, with or without exposure to oxidant (H2O2). Other cells were transfected with an IB mutant (an inhibitor of NF-B). Relative to WT cells exposed to vehicle, oxidant exposure caused increases in IB instability, NF-B subunit activation, iNOS-related activity (NO, oxidative stress, tubulin nitration), microtubule disassembly and instability (increased monomeric and decreased polymeric tubulin), and monolayer disruption. Monolayers pretreated with NF-B inhibitors (MG-132, lactacystin) were protected against oxidation, showing decreases in all measures of the NF-B iNOS NO pathway. Dominant mutant stabilization of IB to inactivate NF-B suppressed all measures of the iNOS/NO upregulation while protecting monolayers against oxidant insult. In these mutants, we found prevention of tubulin nitration and oxidation and enhancement of cytoskeletal and monolayer stability. We concluded that 1) NF-B is required for oxidant-induced iNOS upregulation and for the consequent nitration and oxidation of cytoskeleton; 2) NF-B activation causes cytoskeletal injury following upregulation of NO-driven processes; and 3) the molecular event underlying the destabilizing effects of NF-B appears to be increases in carbonylation and nitrotyrosination of the subunit components of cytoskeleton. The ability to promote NO overproduction and cytoskeletal nitration/oxidation is a novel mechanism not previously attributed to NF-B in cells. tubulin cytoskeleton; microtubules; oxidation/nitration; inducible nitric oxide synthase/peroxynitrite; inflammatory bowel disease; Caco-2 cells; gut barrier; nuclear factor-B/IB  相似文献   

17.
The purpose of this study was to 1) test the hypothesis that skeletal muscle cells (myotubes) after mechanical loading and/or injury are a source of soluble factors that promote neutrophil chemotaxis and superoxide anion (O2·) production and 2) determine whether mechanical loading and/or injury causes myotubes to release cytokines that are known to influence neutrophil responses [tumor necrosis factor- (TNF-), IL-8, and transforming growth factor-1 (TGF-1)]. Human myotubes were grown in culture and exposed to either a cyclic strain (0, 5, 10, 20, or 30% strain) or a scrape injury protocol. Protocols of 5, 10, and 20% strain did not cause injury, whereas 30% strain and scrape injury caused a modest and a high degree of injury, respectively. Conditioned media from strained myotubes promoted chemotaxis of human blood neutrophils and primed them for O2· production in a manner that was dependent on a threshold of strain and independent from injury. Neutrophil chemotaxis, but not priming, progressively increased with higher magnitudes of strain. Conditioned media only from scrape-injured myotubes increased O2· production from neutrophils. Concentrations of IL-8 and total TGF-1 in conditioned media were reduced by mechanical loading, whereas TNF- and active TGF-1 concentrations were unaffected. In conclusion, skeletal muscle cells after mechanical loading and injury are an important source of soluble factors that differentially influence neutrophil chemotaxis and the stages of neutrophil-derived reactive oxygen species production. Neutrophil responses elicited by mechanical loading, however, did not parallel changes in the release of IL-8, TGF-1, or TNF- from skeletal muscle cells. inflammation; cytokines; exercise; free radicals  相似文献   

18.
Regulation and assembly of the epithelial cell junctional complex involve multiple signaling mechanisms, including heterotrimeric G proteins. Recently, we demonstrated that G12 binds to the tight junction scaffolding protein ZO-1 through the SH3 domain and that activated G12 increases paracellular permeability in Madin-Darby canine kidney (MDCK) cells (Meyer et al. J Biol Chem 277: 24855-24858, 2002). In the present studies, we explore the effects of G12 expression on tight and adherens junction proteins and examine downstream signaling pathways. By confocal microscopy, we detect disrupted tight and adherens junction proteins with increased actin stress fibers in constitutively active G12 (QL12)-expressing MDCK cells. The normal distribution of ZO-1 and Na-K-ATPase was altered in QL12-expressing MDCK cells, consistent with loss of polarity. We found that the tyrosine kinase inhibitor genistein and the Src-specific inhibitor PP-2 reversibly abrogated the QL12 phenotype on the junctional complex. Junctional protein localization was preserved in PP-2- or genistein-treated QL12-expressing cells, and the increase in paracellular permeability as measured by transepithelial resistance and [3H]mannitol flux was prevented by the inhibitors. Src activity was increased in QL12-expressing MDCK cells as assessed by Src autophosphorylation, and -catenin tyrosine phosphorylation was also increased, although there was no detectable increase in Rho activity. Taken together, these results indicate that G12 regulates MDCK cell junctions, in part through Src tyrosine kinase pathways. G proteins; tight junction; adherens junction; Rho  相似文献   

19.
We have used normal rat kidney (NRK) fibroblasts as an in vitro model system to study cell transformation. These cells obtain a transformed phenotype upon stimulation with growth-modulating factors such as retinoic acid (RA) or transforming growth factor- (TGF-). Patch-clamp experiments showed that transformation is paralleled by a profound membrane depolarization from around –70 to –20 mV. This depolarization is caused by a compound in the medium conditioned by transformed NRK cells, which enhances intracellular Ca2+ levels and thereby activates Ca2+-dependent Cl channels. This compound was identified as prostaglandin F2 (PGF2) using electrospray ionization mass spectrometry. The active concentration in the medium conditioned by transformed NRK cells as determined using an enzyme immunoassay was 19.7 ± 2.5 nM (n = 6), compared with 1.5 ± 0.1 nM (n = 3) conditioned by nontransformed NRK cells. Externally added PGF2 was able to trigger NRK cells that had grown to density arrest to restart their proliferation. This proliferation was inhibited when the FP receptor (i.e., natural receptor for PGF2) was blocked by AL-8810. RA-induced phenotypic transformation of NRK cells was partially (25%) suppressed by AL-8810. Our results demonstrate that PGF2 acts as an autocrine enhancer and paracrine inducer of cell transformation and suggest that it may play a crucial role in carcinogenesis in general. membrane potential; intracellular calcium; mass spectrometry; FP receptor  相似文献   

20.
Neuronal nicotinic acetylcholine receptors (nAChRs) are made of multiple subunits with diversified functions. The nAChR 7-subunit has a property of high Ca2+ permeability and may have specific functions and localization within the plasma membrane as a signal transduction molecule. In PC-12 cells, fractionation by sucrose gradient centrifugation revealed that nAChR7 existed in low-density, cholesterol-enriched plasma membrane microdomains known as lipid rafts where flotillin also exists. In contrast, nAChR 5- and 2-subunits were located in high-density fractions, out of the lipid rafts. Type 6 adenylyl cyclase (AC6), a calcium-inhibitable isoform, was also found in lipid rafts and was coimmunoprecipitated with nAChR7. Cholesterol depletion from plasma membranes with methyl--cyclodextrin redistributed nAChR7 and AC6 diffusely within plasma membranes. Nicotine stimulation reduced forskolin-stimulated AC activity by 35%, and this inhibition was negated by either treatment with -bungarotoxin, a specific antagonist of nAChR7, or cholesterol depletion from plasma membranes. The effect of cholesterol depletion was negated by the addition of cholesterol. These data suggest that nAChR7 has a specific membrane localization relative to other nAChR subunits and that lipid rafts are necessary to localize nAChR7 with AC within plasma membranes. In addition, nAChR7 may regulate the AC activity via Ca2+ within lipid rafts. cholesterol; PC-12 cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号