首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
The effects of static and 50 Hz magnetic fields on cytochrome-C oxidase activity were investigated in vitro by strictly controlled, simultaneous polarographic measurements of the enzyme's high- and low-affinity redox reaction. Cytochrome-C oxidase was isolated from beef heart. Control experiments were carried out in the ambient geomagnetic and 50 Hz magnetic fields at respective flux densities of 45 and 1.8 μT. The experimentally applied fields, static and time-varying, were generated by Helmholtz coils at flux densities between 50 μT and 100 mT. Exposures were timed to act either on the combined enzyme-substrate interchange or directly on the enzyme's electron and proton translo-cations. Significant changes as high as 90% of the overall cytochrome-C oxidase activity resulted during exposure (1) to a static magnetic field at 300 μT or 10 mT in the high-affinity range, and (2) to a 50 Hz magnetic field at 10 or 50 mT in the low-affinity range. No changes were observed at other flux densities. After exposure to a change-inducing, static or time-varying field, normal activity returned. © 1993 Wiley-Liss. Inc.  相似文献   

2.
We studied the effects of extremely low-frequency (50 Hz) electromagnetic fields (EMFs) on peripheral human blood lymphocytes and DBY747 Saccharomyces cerevisiae. Graded exposure to 50 Hz magnetic flux density was obtained with a Helmholtz coil system set at 1, 10 or 100 microT for 18 h. The effects of EMFs on DNA damage were studied with the single-cell gel electrophoresis assay (comet assay) in lymphocytes. Gene expression profiles of EMF-exposed human and yeast cells were evaluated with DNA microarrays containing 13,971 and 6,212 oligonucleotides, respectively. After exposure to the EMF, we did not observe an increase in the amount of strand breaks or oxidated DNA bases relative to controls or a variation in gene expression profiles. The results suggest that extremely low-frequency EMFs do not induce DNA damage or affect gene expression in these two different eukaryotic cell systems.  相似文献   

3.
In the last 30 years, an increasing public concern about the possible harmful effects of electromagnetic fields generated by power lines and domestic appliances has pushed the scientific community to search for a correct and comprehensive answer to this problem. In this work the effects of exposure to 50 Hz sinusoidal magnetic fields, with a magnetic flux density of 0.05 mT and 2.5 mT (peak values), were studied on human peripheral blood mononuclear cells (PBMCs) collected from healthy young and elderly donors. Cell activation and proliferation were investigated by using flow cytometry techniques and 3H-TdR incorporation assays, respectively. The results obtained indicated that exposure to the fields altered neither DNA synthesis nor the capacity of lymphocytes to enter the activation phase and progress into the cell cycle. Thus, the conclusions are that two important functional phases of human lymphocytes, such as activation and proliferation, are not affected by exposures to 50 Hz magnetic fields similar to those found under power lines.  相似文献   

4.
Environmental exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) has been implicated in the development of cancer in humans. An important basis for assessing a potential cancer risk due to ELF-EMF exposure is knowledge of biological effects on human cells at the chromosomal level. Therefore, we investigated in the present study the effect of intermittent ELF electromagnetic fields (50 Hz, sinusoidal, 5'field-on/10'field-off, 2-24 h, 1 mT) on the induction of micronuclei (MN) and chromosomal aberrations in cultured human fibroblasts. ELF-EMF radiation resulted in a time-dependent increase of micronuclei, which became significant after 10 h of intermittent exposure at a flux density of 1 mT. After approximately 15 h a constant level of micronuclei of about three times the basal level was reached. In addition, chromosomal aberrations were increased up to 10-fold above basal levels. Our data strongly indicate a clastogenic potential of intermittent low-frequency electromagnetic fields, which may lead to considerable chromosomal damage in dividing cells.  相似文献   

5.
The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 ∼ 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.  相似文献   

6.
Weak and low-frequency pulsating electromagnetic fields (ELF-MF) can be applied to change cell metabolism, if cells are treated in a specific range of frequency and amplitude. In our case, the influence on proliferation of human K562 cells has been studied by applying a sinusoidal 50 Hz field of magnetic flux densities (B) between 2 and 13 mT for 2 or 4 days. In repeating all runs three times—counting each day—no difference between experiment and control was found below 6 mT. However, stronger field amplitudes inhibit cell division and induce apoptosis and necrosis as shown by flow cytometry. Treatment with ≥10 mT decreases the number of living cells to only 2% of the control. This electromagnetically induced apoptosis may be a first step for a noninvasive treatment of cancer tissue for inhibition of its proliferation.  相似文献   

7.

Background

It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257–264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT.

Methods

In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study.

Results

Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP.

Conclusion

No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.  相似文献   

8.
It has been shown that exposure to weak combined permanent (42 mT) and low-frequency (3-60 Hz) alternating (0.001-0.06 mT) magnetic fields changes the intensity of fluorescence of water and water-salt solutions. The gel filtration of solutions of inorganic salts treated with magnetic fields gives rise to intensively fluorescing fractions. Control solutions not exposed to electromagnetic waves do not exhibit these effects. The results obtained suggest that treatment with weak electromagnetic fields induces structural changes of water solutions, and the manifestations of these changes depend on the conditions of chromatography and chemical composition of solutions under study.  相似文献   

9.
Exposure to extremely low-frequency (ELF) electromagnetic fields appears to result in a number of important biological changes. In the present study, we evaluated the effects of 60 Hz sinusoidal magnetic fields (MF) at magnetic flux densities of 1.0, 1.5 and 2.0 mT on growth and differentiation of the protozoan Entamoeba invadens. We demonstrated an inhibitory growth effect when trophozoite cultures were exposed to 1.5 and 2.0 mT. Furthermore, we found that there was not a synergistic effect in cultures co-exposed to MF and Metronidazole, a cytotoxic drug against amoebic cells. In addition, MF exposure inhibited the encystation process of E. invadens.  相似文献   

10.
Expression of HSP72 after ELF-EMF exposure in three cell lines   总被引:1,自引:0,他引:1  
  相似文献   

11.
Current peaks have been observed and measured in electrolytic ionic current of L-glutamic acid aqueous solutions at room temperature, in static magnetic fields of 20, 40, and 60 muT flux densities, with a superimposed extremely low-frequency, (1/10) Hz, alternating magnetic field flux density of 40 nT. The distributions of the peaks have mean values centered at the cyclotron resonance frequency of the singly charged L-glutamic acid ion molecular mass in the corresponding static field. Amplitudes and widths of the peaks are compared and analyzed to extract their correlation. The results can be considered a contribution to the understanding of the experimental phenomenology in low-frequency electromagnetic fields on ionic currents of L-glutamic amino acid aqueous solutions. The results can be of interest in the studies on the interaction of the electromagnetic fields with some structural neurotransmitters in cellular medium.  相似文献   

12.
13.
To investigate the effects of an extremely low-frequency (ELF) magnetic field on their fertility, adult male and female Sprague-Dawley rats were exposed to a 50 Hz sinusoidal magnetic field of approximately 25 microT (rms) for 90 days before they were mated with unexposed counterparts. Exposure to a 50 Hz field reduced male rat fertility. The number of pregnant females was reduced when mated with exposed males, and the number of resorptions increased. The effects of magnetic field on male fertility were shown to be partly reversible, when the same exposed group of males were remated 45 and 90 days after being removed from the fields. Exposure of adult female rats to 50 Hz magnetic fields for 90 days before mating significantly reduced their fertility. The mean numbers of implantations and living fetuses per litter were statistically significantly decreased in the 50 Hz group. These results suggest that low frequency magnetic fields have some adverse effects on fertility of male and female rats.  相似文献   

14.
Protein phosphorylation is one of the important processes of cell signal transduction pathways. To study the effects of 50 Hz electromagnetic field (EMF) on the cell signal transduction process, the phosphorylation of stress-activated protein kinase (SAPK/JNK) extracted from Chinese hamster lung (CHL) cells exposed to 0.4 and 0.8 mT 50 Hz EMF for various durations was measured. A solid-phase kinase assay was used to measure the enzymatic activity of SAPK extracted from cells exposed to 50 Hz EMF at the same magnetic flux density and for only 15 min. The results showed that both 0.4 and 0.8 mT could induce the phosphorylation of SAPK, the phosphorylation of SAPK presented a time-dependent course, and there was a difference between the two intensities. The phosphorylated SAPK enhanced its enzymatic activity. All the data indicated that 50 Hz EMF could activate SAPK in a time- and intensity-dependent manner. The biological effects caused by 50 Hz EMF maybe related to the SAPK signal transduction pathway.  相似文献   

15.
16.
In the present study, we first investigated the effects of various types of low-energy, low-frequency electromagnetic fields (EMFs) on DNA synthesis in UMR-106 osteoblast-like cells. The experimental groups were exposed to EMFs for 2 days (twice/day, 30 min/time), and DNA synthesis was measured. The results showed that the cells responded most sensitively to EMFs of some specific combinations of the parameters by an increase in DNA synthesis, implying that EMFs with a specific waveform rather than a complex one can be used in clinical electrotherapy. The parameters were as follows: pulsed electric field (PEF) with pulse width 0.2 ms, field strength 10 V/cm, frequency 125 Hz; sinusoidal electric field (SEF) with field strength 1 V/cm, frequency 10 Hz; and alternating magnetic field (AMF) with field density 0.5 mT, frequency 5 Hz. In addition to frequency, the field strength or field density within a suitable intensity scale played a dominant role in causing the DNA synthesis response. We then compared the effects of two kinds of fields, PEF and AMF, with the optimum parameters identified by the experiments, on alkaline phosphatase (ALP) activity, protein and collagen synthesis, and intracellular levels of cyclic adenosine monophosphate (cAMP). The results indicated that both fields could not only affect UMR-106 cells proliferation but could particularly affect a series of characteristic bioactivities of UMR-106 such as ALP activity and collagen synthesis. The intracellular cAMP levels were increased rapidly and greatly with exposure to both PEF and AMF, implying that the action of low-frequency EMFs proceeds via second messenger-dependent processes originating from signals at the cell membrane. The difference in action between PEF and AMF suggests that they may couple to the cell membrane in a partially different way.  相似文献   

17.
The aim of the present study is to investigate whether extremely low frequency electromagnetic fields (ELF-EMF) affect certain cellular functions and immunologic parameters of mouse macrophages. In this study, the influence of 50 Hz magnetic fields (MF) at 1.0 mT was investigated on the phagocytic activity and on the interleukin-1beta (IL-1beta) production in differentiated macrophages. MF-exposure led to an increased phagocytic activity after 45 min, shown as a 1.6-fold increased uptake of latex beads in MF-exposed cells compared to controls. We also demonstrate an increased IL-1beta release in macrophages after 24 h exposure (1.0 mT MF). Time-dependent IL-1beta formation was significantly increased already after 4 h and reached a maximum of 12.3-fold increase after 24 h compared to controls. Another aspect of this study was to examine the genotoxic capacity of 1.0 mT MF by analyzing the micronucleus (MN) formation in long-term (12, 24, and 48 h) exposed macrophages. Our data show no significant differences in MN formation or irregular mitotic activities in exposed cells. Furthermore, the effects of different flux densities (ranging from 0.05 up to 1.0 mT for 45 min) of 50 Hz MF was tested on free radical formation as an endpoint of cell activation in mouse macrophage precursor cells. All tested flux densities significantly stimulated the formation of free radicals. Here, we demonstrate the capacity of ELF-EMF to stimulate physiological cell functions in mouse macrophages shown by the significantly elevated phagocytic activity, free radical release, and IL-1beta production suggesting the cell activation capacity of ELF-EMF in the absence of any genotoxic effects.  相似文献   

18.
A series of four experiments was performed to determine whether acute exposure to a range of 50 Hz magnetic fields had any effect on a learning task in adult male CD1 mice. A radial-arm maze placed within the bore of an electromagnet was used to assess spatial discrimination learning for food reward. Subjects were reduced to 85% of their free-feeding weight and were placed in the maze for up to 15 minutes each day for 10 days. Performance of the task was measured by using maximum likelihood techniques to calculate the probability that an animal would not reenter any given arm of the maze. Experimental subjects were exposed to a vertical, 50 Hz sinusoidal magnetic field at 5 μT, 50 μT, 0.5 mT, or 5.0 mT (rms). Control subjects were exposed only to a background time-varying field of less than 50 nT and the ambient static field of about 40 μT. The variation in the applied magnetic field was less than 5% except at the ends of the arms, where it approached 10%. It was found that all eight groups of subjects (n = 10 in all cases) showed similar increases in performance with testing, and the acquisition curve for each group of experimental subjects was not significantly different from that of their control group (P > 0.05 in all cases). It was concluded that exposure had no effect on learning at any flux density. This result is contrary to the findings of a number of preliminary studies, although other studies have reported that magnetic fields do not affect spatial learning in adult male rodents. It is possible that differences between experimental conditions might explain some of this apparent discrepancy. © 1996 Wiley-Liss, Inc.  相似文献   

19.
A controlled pilot study was performed to examine the possibility of finding a specific electromagnetic field signal to inhibit angiogenesis during tumor growth. A 120 Hz pulsating magnetic field of 4 and 5 mT was applied to female mice which had been inoculated with murine 16/C mammary adenocarcinoma. After 11 consecutive sessions of 10 min/day exposure to the magnetic field, the animals were sacrificed and an immunohistochemistry analysis of the tumors was performed. CD31 staining indicated that both magnetic fields significantly reduced the vasculature in the tumors: 39% at 4 mT magnetic flux density and 53% at 5 mT. The positive implications for impeding tumor growth and metastasis warrant further studies.  相似文献   

20.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号