首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Deficiency of beta-hexosaminidase A (Hex A) activity typically results in Tay-Sachs disease. However, healthy subjects found to be deficient in Hex A activity (i.e., pseudodeficient) by means of in vitro biochemical tests have been described. We analyzed the HEXA gene of one pseudodeficient subject and identified both a C739-to-T substitution that changes Arg247----Trp on one allele and a previously identified Tay-Sachs disease mutation on the second allele. Six additional pseudodeficient subjects were found to have the C739-to-T mutation. This allele accounted for 32% (20/62) of non-Jewish enzyme-defined Tay-Sachs disease carriers but for none of 36 Jewish enzyme-defined carriers who did not have one of three known mutations common to this group. The C739-to-T allele, together with a "true" Tay-Sachs disease allele, causes Hex A pseudodeficiency. Given both the large proportion of non-Jewish carriers with this allele and that standard biochemical screening cannot differentiate between heterozygotes for the C739-to-T mutations and Tay-Sachs disease carriers, DNA testing for this mutation in at-risk couples is essential. This could prevent unnecessary or incorrect prenatal diagnoses.  相似文献   

2.
Deficient activity of beta-hexosaminidase A (Hex A), resulting from mutations in the HEXA gene, typically causes Tay-Sachs disease. However, healthy individuals lacking Hex A activity against synthetic substrates (i.e., individuals who are pseudodeficient) have been described. Recently, an apparently benign C739-to-T (Arg247Trp) mutation was found among individuals with Hex A levels indistinguishable from those of carriers of Tay-Sachs disease. This allele, when in compound heterozygosity with a second "disease-causing" allele, results in Hex A pseudodeficiency. We examined the HEXA gene of a healthy 42-year-old who was Hex A deficient but did not have the C739-to-T mutation. The HEXA exons were PCR amplified, and the products were analyzed for mutations by using restriction-enzyme digestion or single-strand gel electrophoresis. A G805-to-A (Gly269Ser) mutation associated with adult-onset GM2 gangliosidosis was found on one chromosome. A new mutation, C745-to-T (Arg249Trp), was identified on the second chromosome. This mutation was detected in an additional 4/63 (6%) non-Jewish and 0/218 Ashkenazi Jewish enzyme-defined carriers. Although the Arg249Trp change may result in a late-onset form of GM2 gangliosidosis, any phenotype must be very mild. This new mutation and the benign C739-to-T mutation together account for approximately 38% of non-Jewish enzyme-defined carriers. Because carriers of the C739-to-T and C745-to-T mutations cannot be differentiated from carriers of disease-causing alleles by using the classical biochemical screening approaches, DNA-based analyses for these mutations should be offered for non-Jewish enzyme-defined heterozygotes, before definitive counseling is provided.  相似文献   

3.
The abnormality in the gene coding for the beta-hexosaminidase alpha subunit was analyzed in a non-Jewish patient with clinically typical infantile Tay-Sachs disease. The family was Catholic, and the father and the mother were of Irish and German descent, respectively. A hitherto undescribed single nucleotide transversion was found within exon 11 (G1260----C; Trp420----Cys). The coding sequence was otherwise entirely normal. Expression in the COS I cell system confirmed that the mutant gene does not produce functional enzyme protein. The mutation can be identified rapidly and reliably because it abolishes one of the two KpnI sites in the coding sequence. The patient was a compound heterozygote with one allele carrying this mutation. The nature of the abnormality in the other allele remains unidentified. Examination of genomic DNA from the parents demonstrated that this "Kpn mutation" was inherited from the maternal side of the family.  相似文献   

4.
We have evaluated the feasibility of using PCR-based mutation screening for non-Jewish enzyme-defined carriers identified through Tay-Sachs disease-prevention programs. Although Tay-Sachs mutations are rare in the general population, non-Jewish individuals may be screened as spouses of Jewish carriers or as relatives of probands. In order to define a panel of alleles that might account for the majority of mutations in non-Jewish carriers, we investigated 26 independent alleles from 20 obligate carriers and 3 affected individuals. Eighteen alleles were represented by 12 previously identified mutations, 7 that were newly identified, and 1 that remains unidentified. We then investigated 46 enzyme-defined carrier alleles: 19 were pseudodeficiency alleles, and five mutations accounted for 15 other alleles. An eighth new mutation was detected among enzyme-defined carriers. Eleven alleles remain unidentified, despite the testing for 23 alleles. Some may represent false positives for the enzyme test. Our results indicate that predominant mutations, other than the two pseudodeficiency alleles (739C-->T and 745C-->T) and one disease allele (IVS9+1G-->A), do not occur in the general population. This suggests that it is not possible to define a collection of mutations that could identify an overwhelming majority of the alleles in non-Jews who may require Tay-Sachs carrier screening. We conclude that determination of carrier status by DNA analysis alone is inefficient because of the large proportion of rare alleles. Notwithstanding the possibility of false positives inherent to enzyme screening, this method remains an essential component of carrier screening in non-Jews. DNA screening can be best used as an adjunct to enzyme testing to exclude known HEXA pseudodeficiency alleles, the IVS9+1G-->A disease allele, and other mutations relevant to the subject's genetic heritage.  相似文献   

5.
DNA from 176 carriers of the Tay-Sachs gene was tested for the presence of the three mutations most commonly found among Ashkenazi Jews: the so-called insertion, splice junction, and adult mutations. Among 148 Ashkenazi Jews tested, 108 had the insertion mutation, 26 had the splice junction mutation, five had the adult mutation, and nine had none of the three. Among 28 non-Jewish carriers tested, most of whom were obligate carriers, four had the insertion mutation, one had the adult mutation, and the remaining 23 had none of the three.  相似文献   

6.
Canavan disease: mutations among Jewish and non-jewish patients.   总被引:9,自引:4,他引:5  
Canavan disease is an autosomal recessive leukodystrophy caused by the deficiency of aspartoacylase (ASPA). Sixty-four probands were analyzed for mutations in the ASPA gene. Three point mutations--693C-->A, 854A-->C, and 914C-->A--were identified in the coding sequence. The 693C-->A and 914C-->A base changes, resulting in nonsense tyr231-->ter and missense ala305-->glu mutations, respectively, lead to complete loss of ASPA activity in in vitro expression studies. The 854A-->C transversion converted glu to ala in codon 285. The glu285-->ala mutant ASPA has 2.5% of the activity expressed by the wild-type enzyme. A fourth mutation, 433 --2(A-->G) transition, was identified at the splice-acceptor site in intron 2. The splice-site mutation would lead to skipping of exon 3, accompanied by a frameshift, and thus would produce aberrant ASPA. Of the 128 unrelated Canavan chromosomes analyzed, 88 were from probands of Ashkenazi Jewish descent. The glu285-->ala mutation was predominant (82.9%) in this population, followed by the tyr231-->ter (14.8%) and 433 --2(A-->G) (1.1%) mutations. The three mutations account for 98.8% of the Canavan chromosomes of Ashkenazi Jewish origin. The ala305-->glu mutation was found exclusively in non-Jewish probands of European descent and constituted 60% of the 40 mutant chromosomes. Predominant occurrence of certain mutations among Ashkenazi Jewish and non-Jewish patients with Canavan disease would suggest a founding-father effect in propagation of these mutant chromosomes.  相似文献   

7.
The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewish patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so far among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS + 1 mutation constituted 2.26% of the disease alleles among Jewish patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated "RecNciI" and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations--D409H and R463C--was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, was 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection.  相似文献   

8.
Cystic fibrosis (CF)--an autosomal recessive disorder caused by mutations in CF transmembrane conductance regulator (CFTR) and characterized by abnormal chloride conduction across epithelial membranes, leading to chronic lung and exocrine pancreatic disease--is less common in African-Americans than in Caucasians. No large-scale studies of mutation identification and screening in African-American CF patients have been reported, to date. In this study, the entire coding and flanking intronic sequence of the CFTR gene was analyzed by denaturing gradient-gel electrophoresis and sequencing in an index group of 82 African-American CF chromosomes to identify mutations. One novel mutation, 3120+1G-->A, occurred with a frequency of 12.3% and was also detected in a native African patient. To establish frequencies, an additional group of 66 African-American CF chromosomes were screened for mutations identified in two or more African-American patients. Screening for 16 "common Caucasian" mutations identified 52% of CF alleles in African-Americans, while screening for 8 "common African" mutations accounted for an additional 23%. The combined detection rate of 75% was comparable to the sensitivity of mutation analysis in Caucasian CF patients. These results indicate that African-Americans have their own set of "common" CF mutations that originate from the native African population. Inclusion of these "common" mutations substantially improves CF mutation detection rates in African-Americans.  相似文献   

9.
Samples of genomic DNA from three unrelated American black infants having both biochemical and clinical features of classical infantile Tay-Sachs disease were sequenced following PCR amplification. A G----T transversion was observed in the AG acceptor splice site preceding exon 5 of the beta-hexosaminidase alpha-subunit gene in the first black family. This transversion changed the acceptor splice site from the consensus sequence, AG, to AT, thereby interfering with splicing at this intron 4/exon 5 junction. The proband was homozygous for this mutation; his mother and a brother are heterozygous. The same mutation was found in a second, apparently unrelated, black GM2-gangliosidosis patient. The second patient was a compound heterozygote, as only one allele carried this mutation. The mother and a brother in this second family are carriers for this mutation, while the father and a noncarrier sister are normal for this region of the gene. The third proband did not have this mutation; nor did the mother of a fourth black proband. Eight other independently ascertained non-black, non-Jewish, GM2-gangliosidosis families did not have this mutation. The observation of the same novel mutation in two unrelated black GM2-gangliosidosis patients indicates that the American black population has segregating within it at least one GM2-gangliosidosis mutation which may be specific to this population and not a result of migration.  相似文献   

10.
Type 1 Gaucher disease (GD), a non-neuronopathic lysosomal storage disorder, results from the deficient activity of acid beta-glucosidase (GBA). Type 1 disease is panethnic but is more prevalent in individuals of Ashkenazi Jewish (AJ) descent. Of the causative GBA mutations, N370S is particularly frequent in the AJ population, (q approximately .03), whereas the 84GG insertion (q approximately .003) occurs exclusively in the Ashkenazim. To investigate the genetic history of these mutations in the AJ population, short tandem repeat (STR) markers were used to map a 9.3-cM region containing the GBA locus and to genotype 261 AJ N370S chromosomes, 60 European non-Jewish N370S chromosomes, and 62 AJ 84GG chromosomes. A highly conserved haplotype at four markers flanking GBA (PKLR, D1S1595, D1S2721, and D1S2777) was observed on both the AJ chromosomes and the non-Jewish N370S chromosomes, suggesting the occurrence of a founder common to both populations. Of note, the presence of different divergent haplotypes suggested the occurrence of de novo, recurrent N370S mutations. In contrast, a different conserved haplotype at these markers was identified on the 84GG chromosomes, which was unique to the AJ population. On the basis of the linkage disequilibrium (LD) delta values, the non-Jewish European N370S chromosomes had greater haplotype diversity and less LD at the markers flanking the conserved haplotype than did the AJ N370S chromosomes. This finding is consistent with the presence of the N370S mutation in the non-Jewish European population prior to the founding of the AJ population. Coalescence analyses for the N370S and 84GG mutations estimated similar coalescence times, of 48 and 55.5 generations ago, respectively. The results of these studies are consistent with a significant bottleneck occurring in the AJ population during the first millennium, when the population became established in Europe.  相似文献   

11.
Llopart A  Aguadé M 《Genetics》2000,155(3):1245-1252
Nucleotide variation in an 8.1-kb fragment encompassing the RpII215 gene, which encodes the largest subunit of the RNA polymerase II complex, is analyzed in a sample of 11 chromosomes from a natural population of Drosophila subobscura. No amino acid polymorphism was detected among the 157 segregating sites. The observed numbers of preferred and unpreferred derived synonymous mutations can be explained by neutral mutational processes. In contrast, preferred mutations segregate at significantly higher frequency than unpreferred mutations, suggesting the action of natural selection. The polymorphism to divergence ratio is different for preferred and unpreferred changes, in agreement with their beneficial and deleterious effects on fitness, respectively. Preferred and unpreferred codons are nonrandomly distributed in the RpII215 gene, leading to a heterogeneous distribution of polymorphic to fixed synonymous differences across this coding region. This intragenic variation of the polymorphism/divergence ratio cannot be explained by different patterns of gene expression, mutation, or recombination rates, and therefore it indicates that selection coefficients for synonymous mutations can vary extensively across a coding region. The application of nucleotide composition stationarity tests in coding and flanking noncoding regions, assumed to behave neutrally, allows the detection of the action of natural selection when stationarity holds in the noncoding region.  相似文献   

12.
The adult form of Tay-Sachs disease, adult GM2 gangliosidosis, is an autosomal recessive neurological disorder caused by a partial deficiency of beta-hexosaminidase A. We had previously identified, in Ashkenazi-Jewish adult GM2 gangliosidosis patients, a Gly269----Ser mutation in the beta-hexosaminidase alpha-subunit. All of the Ashkenazi patients were found to be compound heterozygotes with an allele containing the Gly269----Ser mutation together with one of the Ashkenazi infantile Tay-Sachs alleles. We have now found the same Gly269----Ser mutation in six adult GM2 gangliosidosis patients from four different non-Jewish families. Genomic DNA from three of the patients, two of whom were brothers, exhibited a hybridization pattern consistent with homozygosity for the Gly269----Ser mutation. The remaining non-Jewish patients were compound heterozygotes of the Gly269----Ser mutation together with an unidentified alpha-subunit mutation. The results demonstrate that individuals homozygous for the Gly269----Ser change can be clinically affected. The same Gly269----Ser mutation in both the Ashkenazi and non-Jewish patients may be the result of a common ancestor, given that the ancestry of these non-Jewish patients, like the Ashkenazim, can be traced to eastern Europe.  相似文献   

13.
The rate of accumulation of deleterious mutations by Muller's ratchet is investigated in large asexual haploid populations, for a range of parameters with potential biological relevance. The rate of this process is studied by considering a very simple model in which mutations can have two types of effect: either strongly deleterious or mildly deleterious. It is shown that the rate of accumulation of mildly deleterious mutations can be greatly increased by the presence of strongly deleterious mutations, and that this can be predicted from the associated reduction in effective population size (the background selection effect). We also examine the rate of the ratchet when there are two classes of mutation of similar but unequal effects on fitness. The accuracy of analytical approximations for the rate of this process is analysed. Its possible role in causing the degeneration of Y and neo-Y chromosomes is discussed in the light of our present knowledge of deleterious mutation rates and selection coefficients.  相似文献   

14.
Infantile Tay-Sachs disease (TSD) is caused by mutations in the HEXA gene that result in the complete absence of beta-hexosaminidase A activity. It is well known that an elevated frequency of TSD mutations exists among Ashkenazi Jews. More recently it has become apparent that elevated carrier frequencies for TSD also occur in several other ethnic groups, including Moroccan Jews, a subgroup of Sephardic Jews. Elsewhere we reported an in-frame deletion of one of the two adjacent phenylalanine codons at position 304 or 305 (delta F304/305) in one HEXA allele of a Moroccan Jewish TSD patient and in three obligate carriers from six unrelated Moroccan Jewish families. We have now identified two additional mutations within exon 5 of the HEXA gene that account for the remaining TSD alleles in the patient and carriers. One of the mutations is a novel C-to-G transversion, resulting in a replacement of Tyr180 by a stop codon. The other mutation is a G-to-A transition resulting in an Arg170-to-Gln substitution. This mutation is at a CpG site in a Japanese infant with Tay-Sachs disease and was described elsewhere. Analysis of nine obligate carriers from seven unrelated families showed that four harbor the delta F304/305 mutation, two the Arg170----Gln mutation, and one the Tyr180----Stop mutation. We also have developed rapid, nonradioactive assays for the detection of each mutation, which should be helpful for carrier screening.  相似文献   

15.
The Ashkenazi Jewish population is enriched for carriers of a fatal form of Tay-Sachs disease, an inherited disorder caused by mutations in the alpha-chain of the lysosomal enzyme, beta-hexosaminidase A. Until recently it was presumed that Tay-Sachs patients from this ethnic isolate harbored the same alpha-chain mutation. This was disproved by identification of a splice junction defect in the alpha-chain of an Ashkenazi patient which could be found in only 20-30% of the Ashkenazi carriers tested. In this study we have isolated the alpha-chain gene from an Ashkenazi Jewish patient, GM515, with classic Tay-Sachs disease who was negative for the splice junction defect. Sequence analysis of the promoter region, exon and splice junctions regions, and polyadenylation signal area revealed a 4-base pair insertion in exon 11. This mutation introduces a premature termination signal in exon 11 which results in a deficiency of mRNA in Ashkenazi patients. A dot blot assay was developed to screen patients and heterozygote carriers for the insertion mutation. The lesion was found in approximately 70% of the carriers tested, thereby distinguishing it as the major defect underlying Tay-Sachs disease in the Ashkenazi Jewish population.  相似文献   

16.
Summary We examined P factor induced mutations of the Zw gene of Drosophila melanogaster in order to learn more about the site specificity of such mutations. Approximately 70000 chromosomes were screened using a powerful positive selection scheme. As only two mutants were discovered, Zw is a cold spot for transposable element insertion. One mutation involved a complex P element associated chromosomal rearrangement which was used to define the orientation of the gene with respect to the centromere of the X chromosome. The second mutation was either a simple, non-dysgenically induced point mutation or a very unstable insertion.  相似文献   

17.
We have previously shown that about 85% of the mutationsin 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay (7). In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region and their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in our population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available.  相似文献   

18.
Mutational analysis of cancer susceptibility genes has opened up a new era in clinical genetics. In this report we present the results of mutational analysis of the BRCA2 coding sequences in 105 high-risk individuals affected with breast cancer and/or ovarian cancer and previously found to be negative for mutations of the BRCA1 coding sequence in our laboratory. These individuals have a positive family history with three or more cases of breast cancer and/or ovarian cancer at any age from the same side of the family tree. In order to perform a high throughput and reliable mutational analysis of the BRCA genes, we have adapted the conformation-sensitive gel electrophoresis mutation-scanning assay to a fluorescent platform. The advantages are speed, reproducibility and enhanced resolving power of the scanning method. Four unique mutations, including one missense and three frameshift mutations, were identified in the pool of 60 non-Jewish patients (7%). Two cases of the 6174delT mutation were identified in the 45 Ashkenazi Jewish individuals studied (5%). In addition, two novel frameshift mutations, not characteristic of the Jewish subgroup, were identified. Thus there were four mutations in total in this ethnic subgroup (9%). The six mutations identified in this combined patient pool, excluding the 6174delT mutations, are novel and have not been previously reported in the Breast Cancer Information Core (BIC) database. The results indicate that BRCA2 mutations account for the disease in less than 10% of this patient population. In addition, there is no significant difference in frequency of BRCA2 mutations between the Ashkenazi Jewish and non-Jewish families in our clinical patient pool. Received: 8 December 1997 / Accepted: 16 February 1998  相似文献   

19.
Tay-Sachs disease is an inherited lysosomal storage disorder caused by defects in the beta-hexosaminidase alpha-subunit gene. The carrier frequency for Tay-Sachs disease is significantly elevated in both the Ashkenazi Jewish and Moroccan Jewish populations but not in other Jewish groups. We have found that the mutations underlying Tay-Sachs disease in Ashkenazi and Moroccan Jews are different. Analysis of a Moroccan Jewish Tay-Sachs patient had revealed an in-frame deletion (delta F) of one of the two adjacent phenylalanine codons that are present at positions 304 and 305 in the alpha-subunit sequence. The mutation impairs the subunit assembly of beta-hexosaminidase A, resulting in an absence of enzyme activity. The Moroccan patient was found also to carry, in the other alpha-subunit allele, a different, and as yet unidentified, mutation which causes a deficit of mRNA. Analysis of obligate carriers from six unrelated Moroccan Jewish families showed that three harbor the delta F mutation, raising the possibility that this defect may be a prevalent mutation in this ethnic group.  相似文献   

20.
The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号